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Abstract— Inspired by the agility of flying insects and the
recent development on an insect-scale aerial vehicle, we propose
a single-loop adaptive flight control suite designed with an
emphasis on the ability to track dynamic trajectories as a
step towards the goal of performing acrobatic maneuvers as
observed in real insects. Instead of the conventional approach of
having cascaded control loops, the proposed controller directly
regulates the commanded torques to stabilize the attitude
and lateral position in a single loop. The method is verified
by performing trajectory following flights with the insect-
like robot. The results show that the position errors during
trajectory following flights are comparable to those observed
from steady hovering flights.

I. INTRODUCTION

Insects are amongst the most diverse groups of animals

on the planet. Flying insects are capable of exhibiting com-

plex aerial feats unmatched by other flying animals. The

exceptional maneuverability of these flying insects inspires

biologists to advance their understanding of flapping-wing

aerodynamics and insect flight [1], [2], [3], prompting several

efforts to develop insect-scale aerial vehicles [4], [5].

One of the recent successful prototypes from the

RoboBees project demonstrated its first unconstrained flight

[6]. The 80mg Micro Aerial Vehicle (MAV) shown in figure

1 is a result of the culmination of research in meso-scale ac-

tuation and manufacturing technology [7], [8]. The flapping-

wing robot is able to generate body torques and sufficient

lift force [9] satisfying the key requirements for stable flight

with the aid of an active flight controller [6].

In an effort to improve the flight performance demon-

strated in [6], the lack of comprehensive knowledge of

the system and variation caused by imperfect fabrication

motivated the development of a suite of adaptive flight con-

troller capable of coping with model uncertainties [10]. This

brought about marked improvement in flight performance

as evidenced by a reduction in position errors, particularly

for hovering flights. Moreover, the fidelity of this flight

controller was further demonstrated in vertical takeoff and

landing flights.
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Fig. 1. Photograph of a biologically-inspired flapping-wing robot next to
a 16-pin dual in-line package (DIP) integrated circuit for scale.

In flight control of MAVs of similar dynamics–quadrotors,

it is common to divide a controller into an inner loop and an

outer loop [11], [12], [13]. This also applies to our previous

work in [10]. This approach relies on the assumption that the

dynamics of the inner loop is significantly faster than that

of the outer loop, hence two loops could be arranged in a

cascaded configuration. In this case of [10], the inner loop,

which control the attitude dynamics, takes the output from

the lateral controller in the form of an attitude setpoint as

its input. While this was shown to be an effective method

to produce steady hovering flights, it is conceivable that the

cascaded control architecture may lead to unavoidable delay

due to the mentioned assumption, rendering the controller

unsuitable for more aggressive flight trajectories.

As a consequence, in this paper we present the develop-

ment of a flight controller that discard the cascaded structure,

integrating the lateral controller and the attitude controller

into a single block. Not only does this eliminate the delay

in the control loop, but it also effectively improves the

position tracking ability by taking into account the third

and fourth order derivative of the desired position while

generating the control outputs. We verified the capability of

the proposed controller in trajectory following flights using

smooth trajectories generated from an optimization routine

outlined in the later part of the paper.

Notation:

• In equations, bold letters indicate vectors.

• Given an unknown parameter α, its estimate is rep-

resented by α̂. The estimation error α̃ is defined as

α̃ = α̂− α.

• Otherwise, ·̂ represents a unit vector.

• High order derivatives are denoted by bracketed super-

script, i.e., α(n) = dnα/dtn.
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Fig. 2. Definitions of the inertial frame, the body frame, and roll, pitch,
and yaw axes.

II. ROBOT DESIGN AND DYNAMIC MODEL

A. Robot design

The robot prototype used in this paper was first pre-

sented in [9]. The robot is fabricated in the Harvard Micro-

robotics Laboratory using the Smart Composite Microstruc-

tures (SCM) manufacturing process [14], [9]. The robot in

figure 1 weights 80mg and has a wing span of 3.5cm. It is

composed of two bimorph piezoelectric actuators, serving as

flight muscles. By applying a voltage across the piezoelectric

plates, the actuator acts as a bending cantilever beam. The

trajectory of the actuator tip approximates a linear motion.

This is then translated into a rotational flapping motion of

the wing via a flexure-based four-bar transmission.

The actuator, transmission, and wing compose a mechan-

ical system with properties resembling a second order linear

system, roughly equivalent to an ideal forced mass-spring-

damper system [15]. Energy storage and dissipation is domi-

nated by the elastic potential energy of the bending actuator,

the kinetic energy of the flapping wing and surrounding fluid,

and the aerodynamic damping from air drag on the wing.

As a consequence, nominal sinusoidal flapping motion is

achieved by using a sinusoidal driving signal. By keeping

the frequency constant around the system resonant frequency

(≈ 120Hz), the flapping stroke amplitude is maximized.

Thrust can be regulated by amplitude modulation. Alteration

of wing trajectories allows the robot to generate body torques

along its pitch, roll, and yaw axes as defined in figure 2.

More details on the generation of body torques and respective

flapping schemes can be found in [6], [10].

Using a combination of theoretical approximation and em-

pirical data, we generated a mapping between input signals

and four output signals: thrust, roll torque, pitch torque,

and yaw torque [6], [10]. This leaves the remaining task

of devising a controller to determine the thrust and torques

required by the robot to realize pre-planned trajectories.

B. Dynamic model

Ignoring oscillating components, we treat the robot as a

rigid body in three dimensional space–the standard approach

taken in the literature [2], [16]. In body attached coordinates,

roll, pitch, and yaw axes and their respective angular veloc-

ities ωx, ωy, and ωz are defined along x̂, ŷ, and ẑ directions

as illustrated in figure 2.

Given the symmetry of the vehicle, we assume that the

moment of inertia matrix J is diagonal and its elements

are Jx,, Jy , and Jz . The attitude dynamics in the body

frame depends on the total torque acting on the robot and is

described by the Euler’s equation for rigid body dynamics:

Jω̇ =
∑

τ − (ω × Jω) . (1)

Let R denote a rotation matrix relating the orientation of a

vector in the body frame into the inertial frame, it can also be

presented as R =
[

x̂ ŷ ẑ
]

. Its derivative can be written

as a function of angular velocity and vice versa.

Ṙ =
[

ωz ŷ − ωy ẑ ωxẑ − ωzx̂ ωyx̂− ωxŷ
]

,

[

ωx ωy ωz

]

=
[

ẑ · ˙̂y x̂ · ˙̂z ŷ · ˙̂x
]

=





R13Ṙ12 +R23Ṙ22 +R33Ṙ32

R11Ṙ13 +R21Ṙ23 +R31Ṙ33

R12Ṙ11 +R22Ṙ21 +R32Ṙ31





T

.

The translational dynamics of the robot also depends on

the orientation of the robot. In other words, the normalized

thrust Γ (which has a dimension of acceleration, not force)

is nominally aligned with the ẑ axis of the robot. It follows

that we can write the equation of motion of the robot as

m
[

Ẍ Ÿ Z̈
]T

= mg+mΓẑ, (2)

where m denotes the mass of the robot, g is a gravity vector,

and X , Y , and Z are position of the robot in the inertial

frame.

Note that we have not taken into consideration additional

aerodynamic effects that arise in free flight. Such effects,

including unsteady flow, are difficult to capture using simple

models that are suitable for real-time control purposes [3],

[17]. As a result, they are regarded as unmodeled dynamics

by the controller.

III. CONTROLLER DESIGN

The inherent instability of flapping-wing MAVs [2], [3]

requires active flight control. To prevent the robot from

crashing, the attitude controller must nominally align the

robot’s thrust vector against gravity. In [6], we demonstrated

that using a flight controller that possessed a large region

of attraction over the SO(3) space, the flapping-wing robot

achieved stable hovering flights. One distinctive character of

the proposed controller is the relaxation of control over the

exact yaw orientation as it is dispensable in controlling the

heading of the robot, and hence the lateral position of the

vehicle.

To attain more precise hovering, we identified several

critical unknown parameters that significantly affect the flight

performance and re-designed an adaptive flight controller

using sliding mode control techniques [10]. In this case, the
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lateral position of the robot is regulated by changing the

attitude setpoint of the robot, while the altitude is controlled

separately. In other words, the lateral controller and the

attitude controller operate in a cascaded fashion. The lateral

controller determines the attitude setpoint by assuming that

the attitude dynamics are considerably faster than the lateral

dynamics, and therefore the closed-loop attitude dynamics

can be treated as a first order lowpass system. In the mean

time, the attitude controller attempts to realize the attitude

setpoint and minimize the angular velocity of the robot. The

block diagram summarizing key components of this control

architecture is shown in figure 3. This markedly improved the

accuracy in position and substantially reduced visible oscil-

lations during hovering flights as compared with [6]. Simple

lateral maneuvers were also demonstrated, nonetheless, there

was significant room for improvement.

Another drawback of cascading the lateral controller and

the attitude controller in the way implemented in [10] is that

the attitude controller always tries to minimize the rotational

rate. Since the rotational rate is related to the third order

derivative of the position, it is anticipated that a controller

that also determines a suitable angular velocity setpoint

would bring about better performance in trajectory following,

particularly when more aggressive movements are involved.

However, it is not trivial to evaluate the angular velocity

setpoint from the pre-planed trajectory and the current state

of the vehicle. The complication arises as we try to retain

provable Lyapunov stability while the exact yaw orientation

of the robot is not directly controlled. In this paper, we

propose a Lyapunov function that comprises of variables

made of various derivatives of position error projected on

to suitable directions. The outcome is a lateral position

controller that directly regulates the desired torques from

position error, bypassing the attitude controller and, thus,

dropping the assumption regarding the response of the at-

titude controller. The product is a more versatile controller

that is capable of more aggressive trajectory following in

addition to only steady hovering.

In this section, we present the derivation of the proposed

altitude controller and the lateral position controller based

on the sliding mode control method. Although they are

presented separately as illustrated in figure 4, they operate

in parallel rather than in a cascaded configuration. As a

consequence, they can technically be classified as a single

control loop. Later, the controller is modified to accommo-

date an adaptive component and the stability is verified via

Lyapunov’s direct method.

A. Altitude Control

To begin, we define a position vector (r) and the desired

position vector (rd) with respect to the inertial frame:

r =
[

X Y Z
]T

rd =
[

Xd Yd Zd

]T
. (3)

Given the robot’s thrust Γ and the gravity vector g from

equation (2), the translational dynamics of the robot is

Lateral
controller

Attitude
Controller

orientation

position

-

reference

position

attitude setpoint

thrust

torque
Altitude
Controller

Fig. 3. A block diagram illustrating the structure of the flight controller in
[10]. Here the lateral controller computes the attitude setpoint as an input
for the attitude controller.

Lateral
controller

thrust

torque
Altitude
Controller

orientation

position

-

reference

position

Fig. 4. A simplified block diagram showing the underlying structure of the
proposed single-loop controller. The attitude controller is incorporated into
the lateral controller which operates in parallel to the altitude controller.

described by

r̈ = Γẑ + g

= Γ
[

R13 R23 R33

]T
−
[

0 0 g
]T

. (4)

The altitude dynamics are given by the third row of equation

(4).

Z̈ = r̈·
[

0 0 1
]T

= Γ
(

ẑ ·
[

0 0 1
]T

)

− g. (5)

For control purposes, we define a sliding surface variable SΓ

and the variable Z̈r as the following:

SΓ =
(

Z̈ − Z̈d

)

+ Λ1

(

Ż − Żd

)

+ Λ2 (Z − Zd)

= Z̈ − Z̈r, (6)

where Λi’s are positive constants. In this work, we presume

that the generated normalized thrust is approximately a

lowpass filtered signal of the thrust input T , with γ being a

respective filter coefficient such that Γ̇=γ (T − Γ). The time

derivative of SΓ is

ṠΓ = Γ̇R33 + ΓṘ33 −
d

dt
Z̈r

= γ (T − Γ)R33 + Γ (−R32ωx +R31ωy)−
d

dt
Z̈r

(7)
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Here we propose a Lyapunov candidate function

VΓ =
1

2
S2
Γ.

Subsequently, the following control law

T = Γ−γ−1R−1
33

[

Γ (−R32ωx +R31ωy)−
d

dt
Z̈r +KΓSΓ

]

,

with a positive constant gain KΓ and the measured thrust

given as Γ = ‖r̈+ g‖ render the derivative of the Lyapunov

function negative definite

V̇Γ = SΓṠΓ = −KΓS
2
Γ ≤ 0 .

According to the invariant set theorem, the system is stable

in a Lyapunov sense [18].

B. Lateral position control

Since the angular velocity is related to the third-order

derivative of the robot’s position, we consider a variable e,

made up of the differences between the robot’s position and

the setpoint and their derivatives.

e =
(

r(3) − r
(3)
d

)

+ λ1 (r̈− r̈d)

+λ2 (ṙ− ṙd) + λ3 (r− rd)

= r(3) − r(3)r (8)

Note that for the lateral controller, we assume that thrust

is approximately constant, that is Γ̇ is neglected. This is

a reasonable assumption given that, apart from the initial

takeoff period, the thrust rarely varies by more than 5%.

The third derivative of r then becomes

r(3) ≈ Γ ˙̂z = Γ (−ωxŷ + ωyx̂) . (9)

We propose the following sliding surface Sτ and the Lya-

punov function candidate Vτ :

Sτ =
[

−e · ŷ/Γ e · x̂/Γ ωz

]T

=









ωx + Γ−1
(

r
(3)
r · ŷ

)

ωy − Γ−1
(

r
(3)
r · x̂

)

ωz









, (10)

Vτ =
1

2
ST
τ JSτ . (11)

Notice that angular velocity terms appear in (10), linking the

attitude dynamics to the lateral dynamics. Using equations

(1) and (10), we can write the derivative of the sliding surface

as

J Ṡτ = τ − (ω × Jω)− Γ−1J
d

dt









−
(

r
(3)
r · ŷ

)

(

r
(3)
r · x̂

)

0









.

This suggests the commanded body torque

τ = −Γ−1







r
(3)
r · ŷ

−r
(3)
r · x̂
0






× Jω

+Γ−1J
d

dt









−
(

r
(3)
r · ŷ

)

(

r
(3)
r · x̂

)

0









−KτSτ , (12)

so that the time derivative of the proposed Lyapunov function

is negative definite and the system is proven stable:

V̇τ = −ST
τ KτSτ − ST

τ (Sτ × Jω)

= −ST
τ KτSτ ≤ 0.

Examining the control law in equation (12), it can be seen

that the third derivative of r could be written in terms

of angular velocity as in equation (9). Therefore, only

the second derivative of r is required, alongside the body

orientation and its first derivative. Furthermore, that fact that

r
(3)
d is included in r

(3)
r implies that the controller effectively

tracks a setpoint for the angular velocity and its derivative–

the property lacking in previous work [10].

C. Adaptive Control

In [10], we identified six unknown parameters that were

crucial to accomplish steady hover: the misalignment of the

thrust vector from the ẑ axis (ǫx and ǫy), three unknown

torque offsets (τo =
[

τox τoy τoz
]T

), and the normal-

ized thrust offset (To). In this section, we present how the

proposed controller is adapted to take into account the affects

of these unknowns. A predictor and an adaptive component

are also implemented to ensure that these estimates of this

unknowns converge to their true values and stability is still

guaranteed in the Lyapunov analysis.

1) Altitude control law: For a small deviation of the thrust

vector from the presumed robot ẑ axis, the thrust takes on

small lateral components, resulting in a slight modification

to equation (4).

r̈ = Γ (ẑ + ǫxx̂− ǫy ŷ)− g (13)

Similarly, the thrust dynamics is modified to include

the unknown offset by substituting T by Tc − To,

Γ̇=γ (Tc − To − Γ), where Tc is the commanded thrust input.

The derivative of the sliding surface defined in equation (6)

becomes

ṠΓ = (Tc − To − Γ) (R33 + ǫxR31 − ǫyR32)

+Γǫx (−R33ωy +R32ωz)

+Γǫy (−R33ωx +R31ωz)−
d

dt
Z̈r.

Defining

µ = Γǫ̂x (−R33ωy +R32ωz) + Γǫ̂y (−R33ωx +R31ωz)

+ΓR31ωy − ΓR32ωx − dZ̈r/dt,
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the following control signal

Tc = T̂o + Γ− Γ−1R−1
33

(

1− ǫ̂xR31R
−1
33 + ǫ̂yR32R

−1
33

)

× (µ+KΓSΓ) (14)

makes the derivative of the sliding surface expressible as

ṠΓ =





γ (R33 +R31ǫ̂x −R32ǫ̂y)
ΓR33ωy − ΓR32ωz −R31R

−1
33 µ

ΓR33ωx − ΓR31ωz −R32R
−1
33 µ





T 



T̃o

ǫ̃x
ǫ̃y





−KΓSΓ + γT̃o (−R31ǫ̃x +R32ǫ̃y)

= YΓã−KΓSΓ + γT̃o (−R31ǫ̃x +R32ǫ̃y) , (15)

where we have defined a as a vector consisting of the three

unknown parameters and YΓ accordingly. The first two terms

in equation (15) are the typical form that usually appears in

the derivation of adaptive sliding mode controller [18], [10].

The last term is handled explicitly in the last paragraph of

section III-C.4.

2) Lateral control law: Including the effect of ǫx and ǫy,

we define an estimate of r(3) based on the estimates of ǫx
and ǫy:

r̂(3) = Γ
(

˙̂z + ǫ̂x ˙̂x− ǫ̂y ˙̂y
)

. (16)

It follows that the estimate of e from equation (8) can also

be written as ê = r̂(3) − r
(3)
r , where no change has been

made to r
(3)
r . As a consequence, the sliding surface of the

lateral position controller is re-defined:

Ŝτ =
[

−ê · ŷ/Γ ê · x̂/Γ ωz

]

=









ωx − ǫ̂xωz + Γ−1
(

r
(3)
r · ŷ

)

ωy + ǫ̂yωz − Γ−1
(

r
(3)
r · x̂

)

ωz









. (17)

Using the definition in equation(8), we define

˙̂r
(3)

r = r
(4)
d − λ

(

r̂(3) − r
(3)
d

)

− λ2 (r̈− r̈d)− λ3 (ṙ− ṙd)

= ṙ(3)r + λ1

(

r̂(3) − r(3)
)

, (18)

such that equations (16) and(18) give

ṙ(3)r · ŷ = ˙̂r
(3)

r · ŷ − λ1Γωz ǫ̃x

ṙ(3)r · x̂ = ˙̂r
(3)

r · x̂− λ1Γωz ǫ̃y. (19)

Expressing the body torque as the commanded torque τc and

the unknown offset τo, τ = τc+τo, we propose the following

control law:

τc = τ̂o −







Γ−1r
(3)
r · ŷ − ωz ǫ̂x

−Γ−1r
(3)
r · x̂+ ωz ǫ̂y

0






× Jω

+Γ−1J









−
(

r
(3)
r · ˙̂y + ˙̂r

(3)

r · ŷ
)

(

r
(3)
r · ˙̂x+ ˙̂r

(3)

r · x̂
)

0









+





ǫ̂xω̇z

-ǫ̂yω̇z

0



+





˙̂ǫxωz

- ˙̂ǫyωz

0



−Kτ Ŝτ .

It can be shown that using the proposed control law and

equations (11), (17), and (19) the time derivative of the re-

defined sliding surface is

J
˙̂
Sτ = −Kτ Ŝτ + (τ̃o + Yτ ã) , (20)

where

YΓ =





0 λ1Jxωz 0
0 0 −λ1Jyωz

0 0 0



 .

Observe that this proposed commanded torque τc only con-

tains measurable variables and the adaptive parameters ( ˙̂ǫx
and ˙̂ǫy) that will be given in section III-C.4.

3) Predictor: Prior to presenting the adaptive algorithm,

we first design a predictor. The idea is that some parameter

errors are reflected in prediction errors. This information

could be used in conjunction with the regular tracking

error to estimate the unknown parameters. This strategy is

generally known as composite adaptation [18]. In our case,

the predictor also has a vital role in the stability property of

the Lyapunov function candidate shown in the next section.

First, let s be a Laplace variable, we define a first-order

lowpass filter function fγ(·) = γ (s+ γ)−1 . The generated

thrust, therefore, can be written in the form

Γ = fγ (Tc − To) = Tf − To,

where Γf = fγ (Tc). The translational dynamics of the robot

in equation (13) then becomes

r̈ = g+ (Tf − To) (ẑ + ǫxx̂− ǫyŷ)

r̈− Tf ẑ − g = ǫxTf x̂− ǫyTf ŷ − Toẑ +O (ǫTo) .(21)

By neglecting the second-order effects, we can apply the

lowpass filter throughout twice and express the quantity on

the right hand side of equation (21) in vector form as

f2
γ (r̈− Tf ẑ − g) ≈





−f2
γ

(

ẑT
)

f2
γ

(

Tf x̂
T
)

−f2
γ

(

Tf ŷ
T
)





T

a

= Wa. (22)

At this point, we can substitute the vector a by its estimate â

and the estimation error ã and rearrange the terms so that all

measurable and known quantities are on the left hand side

of the equation and call it ε,

f2
γ (r̈− Tf ẑ − g) +W â = W ã

ε = W ã. (23)

Note that the matrix W is also measurable in real time.

4) Adaptive implementation: Here we propose a single

Lyapunov function candidate for control of the flapping-wing

MAV:

V =
1

2
S2
Γ +

1

2
ŜτJ Ŝτ +

1

2
T ãTΥ−1ã+

1

2
τ̃To Ψ−1τ̃o. (24)

The first two terms in equation (24) correspond to altitude

control and lateral position control, while the latter two terms

are penalty terms for errors in the estimation of unknown
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Fig. 5. A block diagram showing the details of the adaptive controller and
complete feedback loop.

parameters. Υ and Ψ are positive diagonal matrices acting

as adaptive gains.

Using the control laws presented in the preceding sections,

the derivative of the Lyapunov function candidate is obtained

by substituting in the results from equation (15) and (20),

V̇ = −KΓS
2
Γ − ŜT

τ Kτ Ŝτ + SΓYΓã+ ŜT
τ (τ̃o + Yτ ã)

+γT̃o (−R31ǫ̃x +R32ǫ̃y)

+ ˙̂a
T
Υ−1ã+ ˙̂τ

T

o Ψ
−1τ̃o. (25)

Hence, we obtain the adaptive law for the unknown torque

offset,
˙̂τo = −ΨŜτ .

For the estimation of a, we propose the following adaptive

algorithm:

˙̂a = −Υ
(

YΓSΓ + Yτ Ŝτ

)

−Υ(∆ + Σ)
(

WTW
)

−1
WT ε, (26)

where ∆ is a positive diagonal matrix and Σ is a matrix with

zero diagonal elements:

Σ =
γ

2





0 −R31 0
−R31 0 R32

0 R32 0



 . (27)

This incorporation of Σ enables us to cancel out terms

that are the product of two parameter errors. Invertibility of

WTW depends on the rank condition of W . From equation

(22), it can be seen that W always has full rank before

filtered. This might no longer be true after filtered. However,

physically W is unlikely to be ill-conditioned. In practice

WTW was always found to be invertible. Lastly, substitution

of equations (23), (26), and (27) into (25) yields

V̇ = −KΓS
2
Γ − ŜT

τ Kτ Ŝτ − ãT∆ã ≤ 0, (28)

that is, the derivative of the Lyapunov function candidate is

negative definite. To finalize the stability proof, the invariant

set theorem is applied. The value of V keeps diminishing as

long as SΓ, Ŝτ , and ã are not all zeros. The fact that Ŝτ

approaches zero does not immediately imply that the lateral

dynamics would be stabilized since when Ŝτ was defined

in equation (17), it includes ǫ̂x and ǫ̂y rather than their true

values. It is the inclusion of information from the predictor

that results in the last term of equation (28) which ensures

that the parameter estimates converge to their true values,

and hence Ŝτ eventually approaches Sτ and lateral stability

is satisfied along with altitude stability.

IV. TRAJECTORY GENERATION

In smooth trajectory planning of robot manipulators, it

is common to minimize the average squared jerk along the

trajectory considered. This is in accordance with findings

in psychophysical experiments on human arm movements

[19]. In path planning of non-holonomic MAVs similar to

our robot or quadrotors, minimum squared snap is preferred

as the fourth order derivative in position can be related to

torque. Hence, the optimization becomes the problem of

minimizing some function of effort or torque inputs [16].

In this paper, we devised an algorithm similar to those

found in [16], [20]. The optimization routine computes a

smooth polynomial trajectory from specified waypoints by

minimizing feedforward torque inputs while keeping the

first four order derivatives of the position at the starting

and ending points zero. The derivatives of the position at

intermediate points are left unconstrained. The generated

trajectories appear similar to those generated by minimizing

the average squared snap along the trajectories.

V. EXPERIMENTS

A. Experimental Setup

Without onboard sensors and control, flight control ex-

periments are carried out in a flight arena equipped with

eight motion capture VICON cameras. These cameras pro-

vide real-time position and orientation feedback by tracking

retroreflective markers attached to the robot at the rate of

500Hz, covering a tracking volume of 0.3× 0.3× 0.3m.

Computation is performed by external computers running

an xPC target (MathWorks) environment. The control algo-

rithm is implemented at the rate of 10kHz for both input

sampling and output signal generation. Drive signals are

delivered to the robot via a bundle of four 51-gauge copper

wires after passing through a digital-to-analog converter and

a high voltage amplifier.

The closed-loop latency of the experimental setup was

found to be 12ms, sufficiently small to experimentally

achieve stable flights [6], [10]. The effect of a wire tether is

not taken into consideration due to its unpredictable nature.

However, simple calculations suggest its contribution should

not affect the flight dynamics significantly.

Without direct measurements, velocity, acceleration, and

angular velocity are not available. In this paper, they are

estimated from the use of filtered derivatives, resulting in a

slight inevitable delay to these measurements.
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Fig. 6. (top) A 3D reconstruction of the trajectory from a 1.5-second
trajectory following flight. The red line indicates a desired path and the blue
line is the actual trajectory. Grey lines and dashed lines are projections of
the colored lines. (bottom) Position-vs-time plots of the reference trajectory
and flight path from the top figure along three axes.

Prior to performing unconstrained flight experiments, the

robot prototype underwent a characterization process. This

began with visual inspection of the flapping amplitude at

various frequencies to identify a suitable operating frequency,

where flapping trajectories of both wings are large and

most symmetrical. Next, several open-loop takeoff flights–

or trimming flights–were carried out in the flight arena. This

process allowed us to preliminarily identify inherent torque

offsets. These torque offsets vary considerably from robot to

robot as a result of manufacturing imperfections. Information

obtained from these steps is sufficient to perform closed-loop

experiments.

B. Hovering Flight

To verify that the proposed controller is capable of stabi-

lizing the robot, we first command the robot to hover at a sta-

tionary setpoint. After a several 5-second flights, the adaptive

components tuned the parameter estimates sufficiently close
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Fig. 7. (top) A 3D reconstruction of the trajectory from a 2.0-second
trajectory following flight. The red line indicates a desired path and the blue
line is the actual trajectory. Grey lines and dashed lines are projections of
the colored lines. (bottom) Position-vs-time plots of the reference trajectory
and flight path from the top figure along three axes.

to their true values. In the absence of mechanical fatigue, the

robot regularly stayed close to the setpoint with a position

error smaller than one body length. The Root Mean Square

(RMS) errors in position for example hovering flights can be

found in Table I. This confirms that the performance of the

proposed controller is comparable to the previous adaptive

controller in [10]. This is consistent with hovering flights

which the setpoint is stationary. Theoretically, the robot is

able to stay aloft indefinitely without crashing. In practice,

we attempt to minimize the total operating time to prevent

mechanical fatigue.

C. Trajectory Following

To demonstrate the tracking ability of the proposed single-

loop controller, we demonstrate our flapping-wing robot

performing smooth trajectories generated by the algorithm

described in section IV. The aim here is to inspect the robot

following similar trajectories at various speed.
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TABLE I

COMPARISON OF THE RMS POSITION ERRORS FROM HOVERING

FLIGHTS AND TRAJECTORY FOLLOWING FLIGHTS.

Trajectory
RMS errors (cm)
X Y Z

hovering flight 1 0.72 0.70 0.15
hovering flight 2 1.25 0.57 0.12
1.0-second trajectory 1.24 1.01 0.16
1.5-second trajectory 0.84 0.82 0.13
2.0-second trajectory 0.93 0.57 0.10

The trajectories in the following experiment were gen-

erated from three setpoints. The robot was set to initially

hover at the starting position, navigate to the middle point

at specified times, and come to stop at the final waypoint in

1.0s, 1.5s and 2.0s. First to fourth order derivatives of the

position at the starting point and ending point were set to

zero as detailed in the previous section.

Figures 6 and 7 show the reference trajectories and

recorded paths of the robot flying through the waypoints in

1.5s and 2.0s respectively. The RMS position errors for these

flights, along with the 1.0-second flight, are also listed in

Table I. The errors listed are the average from the maneuver

interval and 0.5s before and after. It can be seen that in

these cases, the robot was able to follow the predefined path

with no evident increase in position errors compared with

hovering flights. The exception is observed in the 1.0-second

flight, of which the RMS errors are slightly larger than the

rest.

VI. DISCUSSION AND FUTURE WORK

Towards the goal of aggressive maneuvers such as perch-

ing or acrobatic movements as demonstrated by other MAVs

[11], [21], [22], we developed a single-loop controller that

enables an insect-scale flapping-wing robot to follow dy-

namic trajectories with small errors. The single-loop de-

sign eliminates a few assumptions required in the previous

controller [10]. We demonstrated that the approach brought

about improved trajectory following while retaining an adap-

tive ability without compromising stability.

However, it is noticeable that position errors rose as

flight time was reduced. This is unsurprising as additional

aerodynamic effects were not incorporated into the dynamic

model due to the lack of simple and accurate model. It is con-

ceivable that an improved dynamic model could contribute

towards the goal of achieving more aggressive movements.

Alternatively, iterative learning techniques as illustrated in

[11], [22] should also allow the robot to iteratively adapt the

model based on information obtained from previous flights

and eventually succeed in realizing pre-calculated trajectories

with relatively small errors.

REFERENCES

[1] S. P. Sane and M. H. Dickinson, “The aerodynamic effects of wing
rotation and a revised quasi-steady model of flapping flight,” Journal

of Experimental Biology, vol. 205, no. 8, pp. 1087–1096, 2002.

[2] C. T. Orlowski and A. R. Girard, “Dynamics, stability, and control
analyses of flapping wing micro-air vehicles,” Progress in Aerospace

Sciences, vol. 51, pp. 18–30, 2012.
[3] L. Ristroph, A. J. Bergou, G. J. Berman, J. Guckenheimer, Z. J. Wang,

and I. Cohen, “Dynamics, control, and stabilization of turning flight in
fruit flies,” in Natural locomotion in fluids and on surfaces. Springer,
2012, pp. 83–99.

[4] D. Lentink, S. R. Jongerius, and N. L. Bradshaw, “The scalable design
of flapping micro-air vehicles inspired by insect flight,” in Flying

Insects and Robots. Springer, 2010, pp. 185–205.
[5] T. N. Pornsin-Sirirak, Y.-C. Tai, C.-M. Ho, and M. Keennon, “Micro-

bat: A palm-sized electrically powered ornithopter,” in Proceedings of

NASA/JPL Workshop on Biomorphic Robotics, 2001, pp. 14–17.
[6] K. Y. Ma, P. Chirarattananon, S. B. Fuller, and R. J. Wood, “Controlled

flight of a biologically inspired, insect-scale robot,” Science, vol. 340,
no. 6132, pp. 603–607, 2013.

[7] P. S. Sreetharan, J. P. Whitney, M. D. Strauss, and R. J. Wood,
“Monolithic fabrication of millimeter-scale machines,” Journal of
Micromechanics and Microengineering, vol. 22, no. 5, p. 055027,
2012.

[8] R. Wood, E. Steltz, and R. Fearing, “Optimal energy density piezo-
electric bending actuators,” Sensors and Actuators A: Physical, vol.
119, no. 2, pp. 476–488, 2005.

[9] K. Y. Ma, S. M. Felton, and R. J. Wood, “Design, fabrication, and
modeling of the split actuator microrobotic bee,” in Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International Conference on.
IEEE, 2012, pp. 1133–1140.

[10] P. Chirarattananon, K. Y. Ma, and R. J. Wood, “Adaptive control for
takeoff, hovering, and landing of a robotic fly,” in Intelligent Robots
and Systems (IROS), 2013 IEEE/RSJ International Conference on.
IEEE, 2013, to appear.

[11] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation
and control for precise aggressive maneuvers with quadrotors,” The

International Journal of Robotics Research, vol. 31, no. 5, pp. 664–
674, 2012.

[12] M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart, “Inversion
based direct position control and trajectory following for micro aerial
vehicles,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ

International Conference on. IEEE, 2013, pp. 2933–2939.
[13] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin,

“Quadrotor helicopter flight dynamics and control: Theory and ex-
periment,” in Proc. of the AIAA Guidance, Navigation, and Control

Conference, vol. 2, 2007.
[14] J. Whitney, P. Sreetharan, K. Ma, and R. Wood, “Pop-up book

MEMS,” Journal of Micromechanics and Microengineering, vol. 21,
no. 11, p. 115021, 2011.

[15] B. M. Finio, N. O. Pérez-Arancibia, and R. J. Wood, “System
identification and linear time-invariant modeling of an insect-sized
flapping-wing micro air vehicle,” in Intelligent Robots and Systems

(IROS), 2011 IEEE/RSJ International Conference on. IEEE, 2011,
pp. 1107–1114.

[16] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in Robotics and Automation (ICRA), 2011

IEEE International Conference on. IEEE, 2011, pp. 2520–2525.
[17] W. Shyy, H. Aono, S. K. Chimakurthi, P. Trizila, C.-K. Kang, C. E.

Cesnik, and H. Liu, “Recent progress in flapping wing aerodynamics
and aeroelasticity,” Progress in Aerospace Sciences, vol. 46, no. 7, pp.
284–327, 2010.

[18] J.-J. E. Slotine, W. Li et al., Applied nonlinear control. Prentice hall
New Jersey, 1991, vol. 199, no. 1.

[19] T. Flash and N. Hogan, “The coordination of arm movements: an
experimentally confirmed mathematical model,” The journal of Neu-

roscience, vol. 5, no. 7, pp. 1688–1703, 1985.
[20] M. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “Path planning for

motion dependent state estimation on micro aerial vehicles,” in Proc.
of the IEEE International Conference on Robotics and Automation

(ICRA), May 2013.
[21] A. L. Desbiens, A. T. Asbeck, and M. R. Cutkosky, “Landing, perching

and taking off from vertical surfaces,” The International Journal of

Robotics Research, vol. 30, no. 3, pp. 355–370, 2011.
[22] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea, “A simple

learning strategy for high-speed quadrocopter multi-flips,” in Robotics
and Automation (ICRA), 2010 IEEE International Conference on.
IEEE, 2010, pp. 1642–1648.

44


