
Perching with a Robotic Insect using Adaptive Tracking
Control and Iterative Learning Control

Pakpong Chirarattananon, Kevin Y. Ma, and Robert J. Wood∗

Abstract

Inspired by the aerial prowess of flying insects, we demonstrate that their robotic counter-
part, an insect-scale flapping-wing robot, can mimic an aggressive maneuver seen in natural
fliers—landing on a vertical wall. Such acrobatic movement differs from simple lateral maneu-
vers or hover, and therefore requires additional considerations in the control strategy. In this
paper, we propose a single-loop adaptive tracking flight control suite designed with an emphasis
on the ability to track dynamic trajectories, and an iterative learning control algorithm to account
for unmodeled dynamics and systematic errors for improved landing accuracy. Magnets were cho-
sen to enable attachment to the vertical surface due to its simplicity. The proposed controller was
verified in a series of hovering and aggressive translational flights. Furthermore, we show that by
learning from previous failed attempts, the biologically-inspired robot could successfully perch on
a magnetic wall after eight learning iterations.

1 Introduction
Insects are among the most diverse groups of animals on the planet. Flying insects are capable of
exhibiting complex aerial feats unmatched by other flying animals. The exceptional maneuverability
of these flying insects inspires scientists and engineers to advance their understanding of flapping-
wing aerodynamics and insect flight (e.g. Krishnan and Sane (2014); Ristroph et al. (2012)) and
translate this ubiquitous form of locomotion into man-made machines. In recent years, researchers
have developed a number of biologically-inspired flapping-wing vehicles (see De Croon et al. (2012);
Lentink et al. (2010); Richter and Lipson (2011); Gerdes et al. (2014)), including an insect-scale robot
that successfully demonstrated unconstrained tethered flight (Ma et al., 2013; Chirarattananon et al.,
2014a). The 80-mg Micro Aerial Vehicle (MAV) shown in figure 1 is a result of the culmination of
research in mesoscale actuation and manufacturing technology (e.g. Wood et al. (2005); Sreetharan
et al. (2012)).

To date, artificial flapping-wing flight at low Reynolds numbers has typically relied on passive
stability to achieve hover (for examples, De Croon et al. (2012); Lentink et al. (2010); Richter and
Lipson (2011); Teoh et al. (2012)). Unlike in (De Croon et al., 2012; Lentink et al., 2010; Richter
and Lipson, 2011), flying insects and the insect robot in (Ma et al., 2013; Chirarattananon et al.,
2014a) are inherently unstable. This instability necessitates active control, but also leads to increased
maneuverability. The flapping-wing robot in figure 1 is able to generate body torques and sufficient lift
force (Ma et al., 2012), satisfying the key requirements for stable flight with the aid of an active flight
controller (Ma et al., 2013). In an effort to improve the flight performance demonstrated in (Ma et al.,
2013), an adaptive flight controller capable of coping with model uncertainties was developed motivated
by the lack of comprehensive knowledge of the system and variation caused by imperfect fabrication
(Chirarattananon et al., 2014a). This brought about marked improvement in flight performance as

∗This work was partially supported by the National Science Foundation (award number CCF-0926148), and the Wyss
Institute for Biologically Inspired Engineering. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

1

1 cm

Figure 1: Photograph of a biologically-inspired robotic insect on a finger with four reflective markers
for tracking purposes.

evidenced by the reduction in position errors, particularly for hovering flights. However, thus far
the insect-scale robot has only performed basic flight maneuvers and stable hovering, and has yet to
demonstrate any aggressive or acrobatic maneuvers as observed in natural fliers, encountering further
issues in control, fast dynamics, and a lack of understanding of insect-scale unsteady aerodynamics.

To demonstrate that the biologically-inspired robot has a potential to perform acrobatic maneuvers
similar to those seen in natural fliers, in this paper we address the challenges of performing an aggressive
flight maneuver on the insect-scale robot. To be more specific, our ultimate objective is to design flight
control algorithms that allow the robot to land, or perch, on a vertical surface. The path required
to realize such goal could be divided into two steps. The first step entails a thorough re-design of
the adaptive flight controller suitable for aggressive flight trajectories, and the second step involves
additional control algorithms to cope with fast and unknown dynamics not captured by the simple
models.

In the first part of this paper, we briefly discuss the design, manufacture, and dynamic model of
the flapping-wing robot. Fundamentally, the underactuated dynamics of the robotic insect bare some
similarities to the prevalent quadrotor systems (Mellinger et al., 2012; Taha et al., 2012). In section 3,
we provide the derivation of the proposed adaptive tracking controller suitable for the flapping-wing
robot and other classes of MAVs with similar dynamics including quadrotors. The controller was first
presented with limited experimental results in (Chirarattananon et al., 2014c). This controller allows
the vehicle to track trajectories in the SE (3) space with provable asymptotic stability under some
reasonable assumptions. The nonlinear structure distinguishes the proposed controller from the more
commonly adopted PID-type controllers based on linearized dynamics about hover (Deng et al., 2006;
Oppenheimer et al., 2009; Huang et al., 2009). Therefore, the nonlinear controller benefits from the
greater region of attraction. The proposed controller possesses sufficient fidelity to enable the robot
to follow pre-defined trajectories with relatively small errors, however, it fails to capture extreme
dynamics required for the robot to realize highly acrobatic maneuvers, such as perching on a vertical
surface, due to the limited bandwidth and simplified dynamic model.

To further address the difficulties in performing extreme maneuvers, in section 4, we focus on
the perching problem. The topic of perching an MAV has been addressed previously at larger scales
(Cory and Tedrake, 2008; Kovač et al., 2009; Desbiens et al., 2011). In (Cory and Tedrake, 2008), the
authors placed focus on identifying an accurate model of the dynamics and utilized a value iteration
algorithm in the design of the optimal control policy. Both (Kovač et al., 2009; Desbiens et al., 2011),
on the other hand, emphasized the design of novel attachment mechanisms that allowed the MAVs to
perch within a large flight envelope. The very small scale and limited payload capacity of the robotic
insect in this study renders elaborate perching mechanisms an impractical solution. Fortunately,

2

the use of magnetic force becomes more favorable at smaller scales. As the length scale decreases,
weight decreases as a cubic function of the characteristic length, L3 while magnetic forces on magnetic
magnetic attachment under constant magnetic field scale approximately as a function of surface area,
L2. Essentially, magnetic forces dominate gravitational forces at small scales and when the distances
are small (compared to the characteristic dimension of the object). To exploit this, we attach small
steel discs on the robot to enable the robot to land on a vertical magnetic surface.

In terms of control, the Iterative Learning Control (ILC) technique (Bristow et al., 2006; Hehn
and D’Andrea, 2014) was employed in addition to the proposed adaptive tracking controller. The
formulation of the ILC algorithm in section 4, first introduced in (Chirarattananon et al., 2014b),
allows the robot to learn from its previous flights and improves its flight performance through repetition
of the same trajectory, accounting for the robot’s dynamics that are uncaptured by the model and
potentially enabling the robot to realize aggressive trajectories, such as perching, with exceptional
accuracy.

Finally, the proposed methods are verified in trajectory following and vertical landing experiments.
Several flights were performed to compare the performance of the proposed controller with the pre-
viously developed nonlinear controller (Chirarattananon et al., 2014a). A perching trajectory was
then generated according to the constraints of the flight dynamics. The robot iteratively executed the
landing trajectory several times in order to improve the tracking performance. The results are shown
in section 6, followed by the conclusion and discussion.

Notation

• In equations, bold letters indicate vectors.

• Given an unknown parameter α, its estimate is represented by α̂. The estimation error α̃ is
defined as α̃ = α̂− α.

• Otherwise, ·̂ represents a unit vector.

• High order derivatives are denoted by bracketed superscript, i.e., α(n) = dnα/dtn.

2 Dynamic Model of a Flapping-Wing Robot

2.1 Robot Design
The flapping-wing robot considered in this work is shown in figure 1. The robotic insect weighs
80 mg and has a wingspan of 3 cm. It is fabricated using the Smart Composite Microstructures
(SCM) process as detailed in (Ma et al., 2012, 2013). The robot’s structural components are made
of lightweight laser-machined carbon fiber composite. Two wings are composed of a 1.5 µm-thick
polyester membrane supported by carbon fiber spars. The actuation is provided by two piezoelectric
bending actuators that can independently generate approximately linear motion at their tips when a
voltage is applied. Piezoelectric actuators are chosen over electromagnetic motors for the flight muscles
due to their favorable scalability (Wood et al., 2012). Due to the lack of onboard electronics in the
current robot prototype, power and control signals are delivered to the robot via four 51-gauge copper
wires carrying a ground signal, a 300 V voltage rail, and two drive signals. It has been projected that
all necessary flight electronics (microprocessor Zhang et al. (2014), power electronics Karpelson et al.
(2009), and sensors) without a battery would constitute approximately 100 mg payload (Ma et al.,
2015). In parallel research, a scaled-up flapping-wing prototype with a 5.5 cm wingspan and a mass of
380 mg was designed, fabricated, and shown able to carry 115 mg dummy payload (Ma et al., 2015).
The development of an autonomous insect-scale vehicle is a subject of ongoing and future research
(Ma et al., 2015).

When driven, the motion of the actuator is transformed into an angular wing motion by a spherical
four-bar transmission with resilient flexure joints that are fabricated from polyimide film. A passive

3

Pitch axis

Roll axis

Y
a

w
 a

x
is

Tracking

marker

Wing

Actuator

Center

of mass

Figure 2: A schematic diagram demonstrating primary components of the robot and the definition of
the roll, pitch, and yaw axes.

flexure hinge connecting the transmission to the wing interacts with the inertial and aerodynamic
forces acting on the wing to produce a desired angle of attack, resulting in lift that enables the robot
to fly. The actuator, transmission, and wing form a mechanical subsystem with a behavior resembling
a second-order linear system (Ma et al., 2013). As a result, we nominally operate the system with
sinusoidal signals near the system’s resonant frequency of 120 Hz to maximize the flapping stroke
amplitude and minimize reactive power expended by the wing inertia and the hinge stiffness. Lift
modulation is obtained by altering the stroke amplitude. By appropriately modulating the actuator
drive signals, the wing motion can be governed to create pitch, roll, and yaw torques as desired. More
details on the robot design and torque generation schemes can be found in (Ma et al., 2013, 2012).
In previous work (Ma et al., 2013; Chirarattananon et al., 2014a), we have developed a model that
is capable of determining the drive signals given the desired stroke-averaged lift force and torques
with sufficient accuracy for control proposes. In this paper, we assume that the torques can be directly
commanded by the controller, and the delay in the actuation can be neglected (At 120 Hz, we anticipate
that the robot would take fewer than ten flapping strokes (< 80 ms) to realize the torque commands.
These assumptions are also common in the MAVs community (Lee et al., 2010; Mellinger and Kumar,
2011; Lee et al., 2009). This leaves researchers the task of designing a controller that determines the
required lift and torque to stabilize the robot’s flight along the pre-planned trajectories.

2.2 Flight Dynamic Model
The roll, pitch, and yaw axes of the robot are defined as depicted in figure 2. We define the inertial
frame {Î , Ĵ , K̂} such that the K̂-axis points in the opposite direction to the gravity vector g. The origin
of the body frame {̂i, ĵ, k̂} is located at the center of mass of the robot such that the k̂-axis is nominally
aligned with the thrust vector and against gravity when the robot is in the upright orientation as shown
in figure 3. A rotation matrix R ∈ SO (3) maps the body-fixed frame to the inertial frame. The angular
velocities of the robot along the î, ĵ, and k̂ directions are defined as ω = [ωi, ωj , ωk]

T
. The rotational

dynamics of the robot depends on the total torque τ acting on the robot and is described by the Euler’s
equation for rigid body dynamics:

Jω̇ =
∑

τ − (ω × Jω) , (1)

where J denotes the moment of inertia matrix. In this circumstance, we can choose the body-fixed
frame to align with the pitch, roll, and yaw axes of the robot. The off-diagonal elements of J become

4

Driving

signals

Position and

orientation

feedback

Flight

Controller

Inertial

frame

Body

frame

ĵ

î

k̂

Ĵ

Î

K̂

Figure 3: The flight arena is equipped with 4− 8 motion capture cameras for position and orientation
feedback. Definitions of the inertial frame and the body-attached frames are shown.

negligible due to the symmetry of the vehicle and the torque vector is defined directly along the pitch,
roll, and yaw axes, simplifying the dynamics problem.

The time derivative of the rotation matrix Ṙ is given as Ṙ = R [ω×], where the map [(·)×] : R3 7→
so(3), with so(3) being the Lie algebra of SO (3), is defined such that [x×] y = x× y for all x,y ∈ R3.
Note that since the elements of R can also be represented using î, ĵ, and k̂ as R =

[
î ĵ k̂

]
, an

alternative representation of Ṙ can be written as

Ṙ =
[

˙̂i ˙̂j
˙̂
k

]
=

[
ωk ĵ − ωj k̂ ωik̂ − ωk î ωj î− ωiĵ

]
. (2)

The translational dynamics of the robot also depends on the orientation of the robot. In other words,
the normalized thrust Γ (which has a dimension of acceleration, not force) is nominally aligned with
the k̂ axis of the robot. It follows that we can write the equation of motion of the robot as

m
[
Ẍ Ÿ Z̈

]T
= mg +mΓk̂, (3)

where m denotes the mass of the robot, and X, Y , and Z are position of the robot in the inertial
frame. The thrust produced by the robot Γ is modeled to relate to the commanded thrust T by a
first-order differential equation and a gain factor γ:

Γ̇ = γ (T − Γ) . (4)

In equations (1) and (3), we have not taken into consideration additional aerodynamic effects that
arise in free flight. Such effects, including unsteady flow, are difficult to accurately capture using simple
models that are suitable for real-time control purposes. These damping effects are often neglected in
the control problems of MAVs (Huang et al., 2010; Lee et al., 2010; Mellinger and Kumar, 2011). In
the study of insect flight, however, it has been shown that they could be approximately captured as
linear terms in the rotational dynamics and the translational dynamics (Faruque and Sean Humbert,
2010; Ristroph et al., 2013). While these additional terms may be negligible in hovering flight, they
could become significant in more aggressive flight, in which case they are treated as disturbances in
this work.

5

Lateral
Controller

Attitude
Controller

orientation

position

-

reference

position

attitude setpoint

thrust

torque
Altitude
Controller

Figure 4: A block diagram illustrating the structure of the flight controller in Chirarattananon et al.
(2014a). The lateral controller computes the attitude setpoint as an input for the attitude controller.

3 Single-Loop Adaptive Tracking Control
The inherent instability of flapping-wing MAVs (Ristroph et al., 2013; Orlowski and Girard, 2012) re-
quires active flight control. To prevent the robot from crashing, the attitude controller must nominally
align the robot’s thrust vector against gravity. In (Ma et al., 2013), we demonstrated that using a flight
controller that possessed a large region of attraction over the SO (3) space, the flapping-wing robot
achieved stable hovering flights. One distinctive character of the proposed controller is the relaxation
of control over the exact yaw orientation as it is dispensable in controlling the lateral position of the
vehicle as described in equation (3).

To attain more precise hovering, we identified several critical unknown parameters that significantly
affect the flight performance and re-designed an adaptive flight controller using sliding mode control
techniques (Chirarattananon et al., 2014a). In this case, the lateral position of the robot is regulated
by changing the attitude setpoint of the robot, while the altitude is controlled separately. In other
words, the lateral controller and the attitude controller operate in a cascaded fashion. The lateral
controller determines the attitude setpoint by assuming that the attitude dynamics are considerably
faster than the lateral dynamics, and therefore the closed-loop attitude dynamics can be treated
as a first order lowpass system. In the mean time, the attitude controller attempts to realize the
attitude setpoint and minimize the angular velocity of the robot. A block diagram summarizing key
components of this control architecture is shown in figure 4. This markedly improved the accuracy in
position and substantially reduced visible oscillations during hovering flights as compared with (Ma
et al., 2013). Simple lateral maneuvers were also demonstrated; nonetheless, there was significant room
for improvement.

One downside of having a cascaded control structure as in (Chirarattananon et al., 2014a) and
other related literature (Achtelik et al., 2013; Mellinger et al., 2012) is a possible loss in maneuvering
precision due to the assumption that the inner control loop is considerably faster than the outer loop.
Another drawback of the proposed controller in (Chirarattananon et al., 2014a) is that the attitude
controller always tries to minimize the rotational rate. Since the rotational rate is related to the third
order derivative of the position, it is anticipated that a controller that effectively determines a suitable
angular velocity setpoint would bring about better performance in trajectory following, particularly
when more aggressive movements are involved.

In (Lee et al., 2010), a nonlinear controller that explicitly tracks trajectories in SE (3) was proposed
and proved to have exponential attractiveness over a large region. This controller requires a pre-
defined trajectory that includes reference position, orientation, and angular velocity. A variation of
this controller was implemented for quadrotors in (Mellinger and Kumar, 2011). Some existing state-
of-the-art flight controllers for MAVs with similar dynamics use the differential flatness property of

6

Trajectory Tracking
Controller

thrust

torque
Altitude

Controller

orientation

position

-

reference
position

Figure 5: A simplified block diagram showing the underlying structure of the proposed single-loop
tracking controller. The attitude controller in figure 4 is incorporated into the lateral controller,
becoming a trajectory tracking controller, which operates in parallel to the altitude controller.

the vehicle to construct control commands for four rotors from a pre-defined set of four parameters
including X, Y , Z position in the inertia frame and the yaw angle (Mellinger and Kumar, 2011;
Achtelik et al., 2013). This results in controllers that command the thrust and angular velocities of
the vehicle. In our case, previously developed controllers possess two primary shortcomings. First, our
flapping-wing robot lacks an ability to reliably generate yaw torque via the split-cycle wing kinematics
as proposed in (Oppenheimer et al., 2009) and implemented in (Ma et al., 2013; Chirarattananon et al.,
2014a). This renders in impractical to directly control the heading (or yaw angle) of the robot, which
is not necessary for position control. The existing controllers becomes unsuitable as it is not trivial
to evaluate the angular velocity setpoint from the pre-planned trajectory and the current state of the
vehicle when the heading (yaw orientation) is not directly specified. Second, adaptability is a desired
property that was proved to be crucial for performance of flight at this scale (Chirarattananon et al.,
2014a) (further supporting evidence is provided in the analysis of the results in section 6.1). It is not
straightforward to design a controller with proven stability that satisfies the mentioned specifications.
The complication arises as we try to retain provable Lyapunov stability while the exact yaw orientation
of the robot is not directly controlled. Current adaptive flight controllers possess some restrictions
unsuitable for our robot. For instance, the controller in (Dydek et al., 2013) was designed based on
linearized dynamics, Nicol et al. (2011) presents an adaptive controller for flight stabilization without
direct position control or trajectory tracking, and the backstepping method in (Huang et al., 2009)
is complicated in design and was verified in simulation only. Moreover, in these examples, none
considered flight control without direct yaw control. In this paper, we propose a Lyapunov function
that comprises variables made of various derivatives of position error projected on to suitable directions.
The outcome is a tracking controller that directly regulates the desired torques from position errors,
eliminating the former cascaded structure and, thus, dropping the assumption regarding the response
of the attitude controller. The resultant product is a more versatile controller that is capable of more
aggressive trajectory following in addition to only steady hovering. The Lyapunov formulation of the
proposed adaptive component is compatible with the sliding mode approach we used for designing
the tracking controller. The scheme benefits from ease of implementation, guaranteed convergence,
and compatibility with the vehicle’s nonlinear dynamics, compared to alternatives such as L1-adaptive
control that requires linearized dynamics (Ioannou et al., 2014; Guerreiro et al., 2009) or neural-based
adaptive method that necessitates a training period (Nicol et al., 2011; Coza et al., 2011; Madani and
Benallegue, 2008).

In this section, we present the derivation of the proposed altitude controller and the trajectory
tracking controller, briefly introduced in (Chirarattananon et al., 2014c), based on techniques borrowed
from the sliding mode control method (Slotine et al., 1991; Bouabdallah and Siegwart, 2005). Although
they are presented separately as illustrated in figure 5, they operate in parallel rather than in a cascaded
configuration. As a consequence, they can technically be classified as a single control loop. For clarity,
we initially restrict the presentation to a non-adaptive system. Later, the controller is extended to
accommodate an adaptive component and the stability is verified via Lyapunov’s direct method. At

7

the end of the section, we also show that it is possible to directly control the heading of the robot
without theoretically violating any the stability conditions nor deteriorating the tracking performance.

3.1 Altitude Control
To begin, we define a position vector (r) and the desired position vector (rd) of the robot with respect
to the inertial frame:

r =
[
X Y Z

]T
rd =

[
Xd Yd Zd

]T
. (5)

Given the robot’s thrust Γ and the gravity vector g from equation (3), the translational dynamics of
the robot are described by

r̈ = Γk̂ + g = ΓR
[

0 0 1
]T

+ g

= Γ
[
R13 R23 R33

]T − [0 0 g
]T
. (6)

The altitude dynamics are given by the third row of equation (6).

Z̈ = r̈·
[

0 0 1
]T

= ΓR33 − g (7)

For control purposes, we define an auxiliary variable SΓ and the variable Z̈r as the following:

SΓ =
(
Z̈ − Z̈d

)
+ Λ1

(
Ż − Żd

)
+ Λ2 (Z − Zd)

= Z̈ − Z̈r, (8)

where Λi’s are positive constants and the subscript d denotes “desired” or reference trajectories. The
sliding surface is described by SΓ = 0. On this sliding surface, the tracking error, or the difference
between Z and Zd exponentially reduces to zero. The controller is designed to drive the system towards
this sliding surface.

According to equations (4), (7), and (8), the time derivative of SΓ is

ṠΓ = Γ̇R33 + ΓṘ33 −
d

dt
Z̈r

= γ (T − Γ)R33 + Γ (−R32ωi +R31ωj)−
d

dt
Z̈r. (9)

Here we propose a Lyapunov function candidate VΓ (SΓ) : R 7→ R,

VΓ =
1

2
S2

Γ ≥ 0. (10)

The proposed function VΓ satisfies the radially unbounded property, that is SΓ → ∞ ⇒ VΓ → ∞.
Subsequently, the following control law

T = Γ− γ−1R−1
33

[
Γ (−R32ωi +R31ωj)−

d

dt
Z̈r +KΓSΓ

]
, (11)

with a positive constant gain KΓ and the measured thrust from equation (4) given as Γ = ‖r̈− g‖
renders the derivative of the Lyapunov function candidate negative definite

V̇Γ = SΓṠΓ = −KΓS
2
Γ ≤ 0 . (12)

According to the invariant set theorem, the system is globally asymptotically stable in a Lyapunov
sense (Slotine et al., 1991). However, in the physical system, the region of attraction is reduced owing
to the thrust limits of the robot and its inability to generate negative thrust. Note that the proposed
control law in equation (11) includes the first order derivative of Z̈r. From the definition in equation
(8), Z̈r contains the second derivative of the reference Zd and the first derivative of Z, resulting in the
control law that requires up to the second derivative in altitude measurement. In practice, the noise
level in Z̈ is acceptable.

8

3.2 Trajectory Tracking Control
Since the angular velocity is related to the third-order derivative of the robot’s position, we consider an
auxiliary variable e—a vector quantity we would like to minimize, made up of the differences between
the robot’s position and the setpoint and their derivatives.

e =
(
r(3) − r

(3)
d

)
+ λ1 (r̈− r̈d) + λ2 (ṙ− ṙd) + λ3 (r− rd)

= r(3) − r(3)
r , (13)

where we have defined r
(3)
r accordingly. Using equations (2) and (6), the third derivative of r then

becomes

r(3) = Γ
˙̂
k + Γ̇k̂ = Γ

(
−ωiĵ + ωj î

)
+ Γ̇k̂. (14)

We propose the following composite variable Sτ based on the projection of the auxiliary variable e
along the body axes of the robot, and the Lyapunov function candidate Vτ :

Sτ =
[
−e · ĵ/Γ e · î/Γ ωk

]T
=

ωi + Γ−1

(
r

(3)
r · ŷ

)
ωj − Γ−1

(
r

(3)
r · x̂

)
ωk

 , (15)

Vτ =
1

2
STτ JSτ . (16)

The sliding surface Sτ = 0 is obtained when e becomes zero (with the rare exception when e is parallel
to k̂) and the yaw rate (ωk) is minimized. Notice that angular velocity terms appear in equation (15),
linking the attitude dynamics to the lateral dynamics. The third element of Sτ is chosen to be ωk,
consistent with the decision not to directly control the heading of the robot, but only to damp out
the yaw rotation rate that may arise. The quadratic structure means that the Lyapunov function
candidate has the positive definite and radially unbounded properties as desired. Using equations (1)
and (15), we can write the derivative of the composite variable as

J Ṡτ = τ − (ω × Jω)− Γ−1J
d

dt

−
(
r

(3)
r · ĵ

)(
r

(3)
r · î

)
0

 .
This suggests the commanded body torque

τ = −Γ−1

 r
(3)
r · ĵ
−r

(3)
r · î
0

× Jω + Γ−1J
d

dt

−
(
r

(3)
r · ĵ

)(
r

(3)
r · î

)
0

−KτSτ , (17)

so that the time derivative of the proposed Lyapunov function candidate is negative definite and the
system is proven asymptotically stable:

V̇τ = −STτ KτSτ − STτ (Sτ × Jω)

= −STτ KτSτ ≤ 0. (18)

To evaluate the domain of attraction of the controller, observe that the Lyapunov function candidate
in equation (16) is zero only when the robot has no angular velocity ωk, and the auxiliary variable e is

9

zero or parallel to the k̂-axis. The former only happens when the robot tracks the reference trajectory
perfectly, and the latter implies that the error is along the thrust direction, in which case it will be
taken care of by the altitude controller as demonstrated in section 3.1. The exception occurs when the
vector e points in the opposite direction to the k̂-axis. In that circumstance, the control signal makes
no attempt to generate any torques and correct for the error. Therefore, the proposed control law is
almost globally asymptotically stable. One contribution to the large region of attraction achieved here
is owing to the absence of singularities associated with representations of SO (3) such as Euler angles
or ambiguities of quaternions.

Examining the control law in equation (17), it can be seen that the third derivative of the measure-
ment of r embedded in the term −KτSτ could be written in terms of the angular velocity as given in
equation (14). Therefore, only the second derivative of r is required, alongside the body orientation and
its first derivative. Furthermore, that fact that r

(3)
d and r̈d is included in r

(3)
r implies that the controller

offers an improved trajectory tracking performance by effectively tracking a setpoint for the angular
velocity in addition to the acceleration—the property lacking in previous work (Chirarattananon et al.,
2014a). In the absence of the tracking error (Sτ = 0), the first two terms in equation (17) remain
non-zero unless r

(3)
d is zero. In other words, they serve as a feedforward term in the proposed control

law.

3.3 Adaptive Control
In (Chirarattananon et al., 2014a), we identified six unknown parameters that were crucial to accom-
plish steady hover for the millimeter-scale robot: the misalignment of the thrust vector from the k̂
axis (εi and εj), three unknown torque offsets (τo =

[
τoi τoj τok

]T), and the normalized thrust
offset (To). In this section, we present how the proposed controller is modified to take into account
the effects of these unknowns, starting by including those effects into the dynamic model. We then
present how the composite variables and the control laws should be altered. A predictor and an adap-
tive component are implemented to ensure that the estimates of the unknowns converge to their true
values and stability is still guaranteed as shown in the Lyapunov analysis at the end of the section.

3.3.1 Altitude control law

For a small deviation of the thrust vector from the presumed robot k̂-axis, the thrust takes on small
lateral components along the î and ĵ axes (εi, εj � 1), resulting in a slight modification to equation
(6),

r̈ = Γ
(
k̂ + εiî− εj ĵ

)
− g. (19)

Similarly, the thrust dynamics are modified to include the unknown offset To by substituting T by
Tc − To into equation (4), where Tc is the commanded thrust input. This yields

Γ̇=γ (Tc − To − Γ), (20)

The derivative of the composite variable defined in equation (8) becomes

ṠΓ = γ (Tc − To − Γ) (R33 + εiR31 − εjR32) + Γ (−R32ωi +R31ωj) (21)

+Γεi (−R33ωj +R32ωk) + Γεj (−R33ωi +R31ωk)− d

dt
Z̈r.

We define

µ = Γε̂i (−R33ωj +R32ωk) + Γε̂j (−R33ωi +R31ωk) + Γ (−R32ωi +R31ωj)− dZ̈r/dt, (22)

and propose the following control signal

Tc = T̂o + Γ− γ−1R−1
33

(
1− ε̂iR31R

−1
33 + ε̂jR32R

−1
33

)
(µ+KΓSΓ) . (23)

10

By using the approximation(
1− ε̂iR31R

−1
33 + ε̂jR32R

−1
33

)
=
(
1 + ε̂iR31R

−1
33 − ε̂jR32R

−1
33

)−1
+O

(
ε̂2
)

(24)

it can be shown that the proposed control law makes the derivative of the composite variable in
equation (21) expressible as

ṠΓ = −KΓSΓ +

 γ (R33 +R31ε̂i −R32ε̂j)
ΓR33ωj − ΓR32ωk +R31R

−1
33 µ

ΓR33ωi − ΓR31ωk −R32R
−1
33 µ

T T̃o
ε̃i
ε̃j

+ γT̃o (−R31ε̃i +R32ε̃j) +O
(
ε̂2
)

≈ −KΓSΓ + Y TΓ ã + γT̃o (−R31ε̃i +R32ε̃j) , (25)

where we have defined a as a vector consisting of the three unknown parameters and the vector YΓ

accordingly. For small deviations (εi, εj ≈ 0.1), and a reasonably large tilt angle (R31R
−1
33 , R32R

−1
33 ≈ 1)

the error caused from the approximation in equation (24) is less than one percent. The first term in
equation (25) is identical to the non-adaptive case in equation (12). The vector YΓ in the second term
contains only known and measurable quantities. These two terms are the typical form that usually
appear in the derivation of adaptive sliding mode controllers (Slotine et al., 1991; Chirarattananon
et al., 2014a). To achieve Lyapunov stability, the last term has to be handled explicitly as described
in the last paragraph of section 3.3.4.

3.3.2 Trajectory tracking control law

Including the effect of εi and εj , we define an estimate of r(3) based on the estimates of εi and εj based
on equation (14):

r̂(3) = Γ
(

˙̂
k + ε̂i

˙̂i− ε̂j ˙̂j
)

+ Γ̇
(
k̂ + ε̂iî− ε̂j k̂

)
. (26)

It follows that we can also define an estimate of e from equation (13) as ê = r̂(3)−r
(3)
r , the definition of

r
(3)
r from equation (13) remains unchanged. As a consequence, the composite variable of the tracking
controller is re-defined as Ŝτ :

Ŝτ =

−
(
ê · ĵ

)
Γ−1(

ê · î
)

Γ−1

ωk

 =

ωi − ε̂iωk + Γ−1

(
r

(3)
r · ĵ

)
ωj + ε̂jωk − Γ−1

(
r

(3)
r · î

)
ωk

+
Γ̇

Γ

 ε̂j
−ε̂i
0

 (27)

In general maneuvers, Γ does not vary appreciably from g. The last term in equation (27) can be
neglected. Without the knowledge of the true εi and εj , it is sensible to minimize Ŝτ .

The next step in the derivation involves taking the time derivative of Ŝτ , which inevitably introduces
the ṙ

(3)
r term. This ṙ

(3)
r term contains unknown variables (εi, εj). To ensure that they are absent from

the control law, we define ˙̂r
(3)
r from equation (13) and (26) to exclude unknown variables (εi, εj) as

˙̂r(3)
r = r

(4)
d − λ1

(
r̂(3) − r

(3)
d

)
− λ2 (r̈− r̈d)− λ3 (ṙ− ṙd)

= ṙ(3)
r − λ1

(
r̂(3) − r(3)

)
, (28)

such that when the terms with Γ̇ are neglected, equations (26) and (28) give

ṙ(3)
r · ĵ = ˙̂r(3)

r · ĵ + λ1Γωk ε̃i

ṙ(3)
r · î = ˙̂r(3)

r · î+ λ1Γωk ε̃j . (29)

11

Expressing the body torque as the commanded torque τc and the unknown offset τo, τ = τc − τo, we
propose the following control law:

τc = τ̂o −

 Γ−1r
(3)
r · ĵ − ωk ε̂i

−Γ−1r
(3)
r · î+ ωk ε̂j

0

× Jω + Γ−1J

−
(
r

(3)
r · ˙̂j + ˙̂r

(3)
r · ĵ

)(
r

(3)
r · ˙̂i+ ˙̂r

(3)
r · î

)
0

+J

 ε̂iω̇k + ˙̂εiωk
-ε̂jω̇k- ˙̂εjωk

0

−Kτ Ŝτ . (30)

It can be shown that using the proposed control law and equations (16), (27), and (29) the time
derivative of the re-defined composite variable is

J
˙̂
Sτ = −Kτ Ŝτ − Ŝτ × Jω + (τ̃o + Yτ ã) , (31)

where

Yτ =

 0 λ1Jiωk 0
0 0 −λ1Jjωk
0 0 0

 . (32)

Equation (31) is affine in the estimation errors τ̃o and ã, rendering it possible to apply an adaptive
algorithm later. Observe that this proposed commanded torque τc only contains measurable variables
and the adaptive parameters (˙̂εi and ˙̂εj) that will be given in section 3.3.4.

3.3.3 Predictor

Prior to presenting the adaptive algorithm, we first design a predictor. The idea is that some parameter
errors are reflected in the prediction errors. This information could be used in conjunction with the
regular tracking error to estimate the unknown parameters. This strategy is generally known as
composite adaptation (Slotine et al., 1991). In our case, the predictor also has a vital role in the
stability property of the Lyapunov function candidate shown in the next section.

First, we consider the altitude dynamics. For a Laplace variable s, we define a first-order lowpass
filter function fα (·) = α (s+ α)

−1. The thrust dynamics in equation (20) can be rewritten as Γ =
fα (TC − To) = fα (Tc) − To. The translational dynamics of the robot in equation (19) could be
expressed as

r̈− fα (TC) k̂ − g = εxfα (TC) î− εyfα (TC) ĵ − Tok̂ +O (εTo) . (33)

By neglecting the second-order uncertainties, equation (33) can be re-arranged such that the right
hand side is segregated as a linear function of a. A lowpass filter function fα (·) is then applied twice
throughout in order to make all terms in the equation causal

f2
α

(
r̈− fα (TC) k̂ − g

)
≈ f2

α

([
−ẑ fα (Γc) î fα (Γc) ĵ

])
a

= −Wa. (34)

At this step, we can split a as its estimate â and the estimation error ã and organize them such that
all measurable and known quantities are on the left hand side of the equation and define them as ε

f2
α

(
r̈− fα (TC) k̂ − g

)
+W â = W ã

ε = W ã. (35)

The interpretation of this equation is that estimation errors ã are reflected into measurable quantities
ε via a projection W . This will be combined with the tracking errors to produce a control law that
guarantees the convergence of unknown parameters in the next section.

12

3.3.4 Lyapunov analysis

Based on results presented thus far from sections 3.3.1-3.3.3, in this part, we propose a single Lyapunov
function candidate for position control of the flapping-wing robot of interest:

V =
1

2
S2

Γ +
1

2
ŜTτ JŜτ +

1

2
ãTΥ−1ã +

1

2
τ̃oΨ

−1τ̃o. (36)

The first two terms in equation (36) correspond to errors in the altitude and translational dynamics
similar to the non-adaptive Lyapunov function candidates proposed in section 3.1 and 3.2. The latter
two terms penalize the estimation errors of unknown parameters. The variables Υ and Ψ are positive
diagonal matrices acting as adaptive gains. It follows that the time derivative of the Lyapunov function
candidate could be found by substituting in the results from equation (25) and (31),

V̇ = −KΓS
2
Γ − ŜTτ Kτ Ŝτ

+ ˙̂τTΨ−1τ̃o + ŜTτ (τ̃o + Yτ ã)

+ ˙̂aTΥ−1ã + +SΓYΓã + γSΓT̃o (−R31ε̃i +R32ε̃j) . (37)

The first two terms are desirable as they are upper bounded by zero, driving the Lyapunov function
candidate towards zero. The adaptive schemes are designed to get rid of the other terms. To eliminate
the estimation error terms, the adaptive law for the unknown torque offsets is

˙̂τo = −ΨŜτ . (38)

and the adaptive law for ˙̂a is

˙̂a = −Υ
(
Y TΓ SΓ + Y Tτ Ŝτ

)
−Υ (∆ + ΣST)

(
WTW

)−1
WT ε, (39)

where ∆ is a positive diagonal adaptive gain matrix and

Σ =
γ

2

 0 −R31 0
−R31 0 R32

0 R32 0

 . (40)

Since ε can be written in terms of ã as given in equation (35), the adaptive algorithms in equations
(38) and (39) can be verified to cancel out unwanted terms in equation (37), leaving the time derivative
of the Lyapunov function candidate negative definite,

V̇ = −KΓS
2
Γ − ŜTτ Kτ Ŝτ − ãT∆ã ≤ 0. (41)

To finalize the stability proof, the invariant set theorem is applied. The value of V keeps diminishing
as long as SΓ, Ŝτ , and ã are not all zeros. The fact that Ŝτ approaches zero does not immediately
imply that the translational dynamics would be stabilized since when Ŝτ was defined in equation (27),
it includes ε̂i and ε̂j rather than their true values. It is the inclusion of information from the predictor
that results in the last term of equation (41) which ensures that the parameter estimates converge to
their true values, and hence Ŝτ eventually approaches Sτ and translational stability is satisfied along
with altitude stability.

3.4 Optional Heading Control
Thus far, we have designed the adaptive tracking controller for the robot without a direct control over
the yaw orientation—the heading—of the robot. This follows from the fact that, similar to quadrotors
and some multi-rotor systems (Lee et al., 2010; Mellinger et al., 2012), the thrust produced by the

13

Trajectory
Tracking Controller

thrust

torque

Altitude
Controller

orientation

position-

reference
position

Robot
Model

Robot

Motion Capture
System

driving
signals

Iterative Learning
Controller

Figure 6: A block diagram illustrating the incorporation of the iterative learning control algorithm (in
dashed lines) into the previous feedback control architecture of the robot.

flapping-wing robot is nominally aligned with the vertical or k̂-axis of the robot, independent of its
yaw orientation. The translational dynamics of the robot is unconnected to the robot’s heading. This
is reflected in the control law for the yaw torque of the robot as seen in equations (17) and (30). The
yaw command only damps out the yaw rotational rate in order to prevent the robot from spinning
uncontrollably. The proposed control scheme is sufficient for commanding the trajectory of the robot
in three dimensional space.

In many applications, however, it may be preferable to have control over the heading of the aerial
robots. Examples include vision-based and photographic applications (Duhamel et al., 2013), 3D
printing using aerial robots (Hunt et al., 2014), and aerial manipulators (Orsag et al., 2013). It turns
out that a simple modification to the composite variable defined in equation (15) or (27) would allow
the robot to follow a commanded yaw orientation.

Here we present one possible implementation of the heading control not previously discussed in
(Chirarattananon et al., 2014c). Consider the scenario where we would like the î-axis of the robot to
point to the direction of the vector Îh defined on the Î − Ĵ plane in the inertial frame. Let θh be the
angle between the vector Îh and the projection of î on to the Î − Ĵ plane (with the sign defined by the
right hand rule about the K̂-axis). Then we can introduce an additional term λhθh, for some positive
constant λh to the composite variable Sτ from equation (15) as

Sτ =
[
−e · ĵ/Γ e · î/Γ ωk + λhθh

]T
. (42)

As a consequence, two additional terms
(
−λhθ̇h −Kτλhθh

)
arise in the third element of the control

torque τc from the inclusion of λhθh in Sτ . The θ̇h term can be expressed as a function of the orientation
and rotational rate of the robot. The full expression is omitted for brevity.

4 Iterative Learning Control for Perching on a Vertical Surface
In theory, the proposed adaptive tracking controller is capable of trajectory following flight thanks
to the consideration of higher-order dynamics and inclusion of the feedforward term. The adaptive
part is also capable of correcting for some model uncertainties. However, the limited bandwidth of
the controller (for example, the actuation delay for torque generation is not taken into account in the

14

proposed controller) and the simplified dynamic and aerodynamic models mean that there remains
some dynamics uncaptured by the model and the proposed controller. While these effects are not
critical to hovering flights and basic maneuvers, they become significant in more aggressive flight such
as landing on a vertical surface. In this section, we rely on the fact that systematic modeling errors on
a particular trajectory are repeatable across multiple iterations and, hence, can be learned iteratively
as preliminarily shown in (Chirarattananon et al., 2014b). The use of iterative learning control in MAV
community was pioneered in (Lupashin et al., 2010; Mellinger et al., 2012) using simple formulations.
The idea was developed further with an elaborate framework in (Schöllig and D’Andrea, 2009; Schoellig
et al., 2012). As illustrated in (Mueller et al., 2012), implementation of iterative learning radically
improved trajectory tracking performance of a quadrotor by acausally correcting for errors before
they occur, essentially compensating for actuation delay and limited control bandwidth. For the task
of perching a flapping-wing robot on a vertical surface—a highly dynamic maneuver well outside of
the typical flight envelope for MAVs, the iterative learning control technique potentially permits us
to successfully achieve this task, leveraging the fact that a sub-100-mg robot does not always fail
upon crashing, whereas a 500-g quadrotors are more likely to suffer mechanical damage. As seen in
(Mellinger et al., 2012), a quadrotor must be able to detect a failed perching attempt and recover.

To begin, we first constrain the landing dynamics to a two-dimensional plane. Based on the 2D
dynamics, a landing trajectory is constructed and a method is proposed to find an additional control
signal to compensate for the unaccounted dynamics learned from the previous iterations.

4.1 2D Model
To simplify the problem of landing on a vertical wall, we restrict our analysis to the two dimensional
plane defined as Î − K̂ in the inertial coordinate frame. The state variables of interest consists of the
position and velocity of the robot along the Î and K̂ directions, the tilt angle (θ) of the robot defined
as the angle between the k̂ axis and the K̂ axis as projected onto the Î − K̂ plane (with k̂ tilted in
the +Î direction defined as positive), and the normalized thrust (with the dimension of acceleration)
produced by the robot (Γ). The vector containing state variables is denoted as X and is given in
equation (43).

X =
[
X Ẋ Z Ż θ θ̇ Γ

]T
. (43)

The dynamics of θ̇ are assumed to depend on the normalized projected torque τ̄ as θ̈ = τ̄ (the damping
is neglected owing to the limited range of rotation and speed) and the thrust is related to the thrust
input T by the first order dynamics, Γ = −γ (Γ− T), as given by equation (4). Therefore, T and τ̄
are regarded as two inputs to the system:

U =
[
T τ̄

]T
. (44)

When constraining the dynamics of the robot on the vertical plane, the accelerations of the robot along
and perpendicular to the Î direction are functions of the tilt angle θ. That is, to maneuver laterally, the
robot must tilt its body so that the thrust vector takes on a lateral component. Moreover, we assume
a linear damping term in the lateral dynamics (this was neglected in the controller design earlier).
The linear damping behavior (as opposed to the usual quadratic velocity dependence) arises from the
domination of the drag force from the flapping wings over the body drag as reported in (Ristroph
et al., 2013; Chirarattananon and Wood, 2013). As a consequence, the time derivative of the state
vector X can be found from the following expression:

d

dt

Ẋ

Ż

θ̇
Γ

 =

−Γ sin θ − ξẊ

Γ cos θ − g
τ̄

−γ (Γ− T)

 , (45)

15

speed

Figure 7: A schematic diagram demonstrating how the robot can perch on a vertical wall. Initially
it needs to build up sufficient forward momentum to retain it when the robot rotates to the opposite
direction at the moment of landing on the wall.

where ξ is a linear damping coefficient. This equation formulates a framework for the analysis of
trajectory generation and ILC in sections 4.2 and 4.3.

4.2 Trajectory Generation
One requirement for perching on a vertical surface is to find a plausible trajectory that satisfies the
constraints imposed by the dynamics of the robot as given in equation (45). To land on a vertical
surface, there are some specifications on the trajectory, particularly at the end of the trajectory. The
robot has to come into contact with the wall at steep tilt angle (preferably larger than 45◦). Hence,
it needs to generate a significant amount of torque at the very end of the trajectory. Since the
torque generated is coupled with the thrust and the thrust vector is aligned with the body angle, this
would decelerate the robot and potentially causes it to move away from the wall at the same time.
Consequently, to perch on a wall, the robot has to carry sufficient forward momentum to ensure that
the robot does not move backwards. A schematic diagram illustrating a perching trajectory is shown
in figure 7.

More specifically, for perching robot on a vertical wall, we would like to design a trajectory with
the desired terminal position and angle (X, Z, and θ). The two-dimensional dynamics of the robot
as given in equation (45) is differentially flat (Van Nieuwstadt and Murray, 1997) which only two
quantities, namely X and Z, can be chosen as flat outputs for torque and thrust as control inputs.
Hence, to achieve required landing conditions that involve more than two parameters (for example, X,
Z, θ, Ẋ, and θ̇) a suitable trajectory must be generated. Mathematically, the trajectory generation
problem can be reformulated as an optimization problem with a quadratic cost structure. Though,
the true purpose of the proposed framework in this section is to find a feasible (or locally optimal)
trajectory that satisfies the constraints rather than searching for the truly optimal trajectory. Here,
the cost function J is comprised of an instantaneous cost g (·) and a terminal cost h (·). These can be
expressed in term of the desired states as written in equation (46).

J =

ˆ tf

ti

g (X,U) dt+ h
(
Xtf

)
=

ˆ tf

ti

[
X U

]
Λg
[

X U
]T − λgẊ dt (46)

+
(
Xtf −Xtf ,ref

)T
Λgtf

(
Xtf −Xtf ,ref

)
− λgtf Ẋtf ,

where Xtf and Xtf ,ref denote the terminal state vector and the desired terminal state vector, Λg, Λgtf ,
λg, and λgtf are diagonal matrices and scalar constants, and ti and tf indicate initial and final times
of the perching trajectory. The presence of Λg ensures that the robot always maintains a reasonable
altitude and imposes soft constraints on the input signals. The term λg encourages the robot to build
up a forward velocity. Similarly, the final cost enforced by Λgtf and λgtf influences the optimizer to
search for a trajectory that ends at a desired landing position and orientation with some final forward
velocity.

16

A common practice for such optimization problems is to confine the search space. In this circum-
stance, we limit the inputs to be polynomial functions of time as:

Γ (t) =

(
i=NΓ∑
i=0

ait
i

)2

τ (t) = Γ (t)

i=Nτ∑
i=0

bit
i, (47)

here ai and bi are polynomial coefficients to be searched for. The use of polynomial structure has
some benefits. For instance, by constraining b0 to zero guarantees that a robot starting in the upright
orientation will have dX/dt = d2X/dt2 = d3X/dt3 = d4X/dt4 = 0 and the trajectory is smooth at
the beginning. Notice the quadratic structure of the thrust which is implemented ensures the thrust
is always non-negative. Also, the existence of Γ in the expression of τ renders the model to be more
realistic as the generation of torque is coupled with the generated thrust in the flapping-wing robot.

The proposed objective function in equation 46 optimizes for desired trajectory properties. The
approach here is different from the method often taken in robotics or MAV communities (Mellinger
and Kumar, 2011), where kth derivative of position squared is minimized, and other specifications
are treated as constraints. The primary motivation is that, for a perching task, the landing position,
for example, is not constrained in practice as we have can choose the target position at an arbitrary
distance from the starting position. On the other hand, we emphasize on reaching sufficient terminal
angle and velocity by putting them in the objective function rather treating them as constraints. The
disadvantage is the resultant trajectory may not be optimized for control inputs as seen in related
work.

To find a locally optimal or feasible solution of equations (46) and (47), several tools could be
employed. Most tools significantly benefit from a Jacobian—the derivative of the cost function J with
respect to a parameter to optimize—if it can be directly calculated. Here we compute the gradient with
the Real-Time Recurrent Learning (RTRL) method (Williams and Zipser, 1989; Hoburg and Tedrake,
2009).

To begin, we express the dynamics of the state vector as Ẋ = f (X,U). For a parameter to optimize
α (which, in this circumstance, could be ai or bi), we have

∂

∂α

(
Ẋ
)

=
d

dt

(
∂X

∂α

)
=

∂f

∂X

∂X

∂α
+
∂f

∂U

∂U

∂α

=
d

dt
P =

∂f

∂X
P +

∂f

∂U
Q,

(48)

where P and Q have been defined as ∂X/∂α and ∂U/∂α respectively. According to equation (46), the
Jacobian ∂J/∂α is then simply given as

∂J

∂α
=

ˆ tf

ti

(
∂g

∂X
P +

∂g

∂U
Q

)
dt+

∂h

∂X
P +

∂h

∂U
Q. (49)

It is straightforward to obtain ∂f/∂X and ∂f/∂U from equation (45). Thus, by integrating forward
equation (48) to find P , the gradient ∂J/∂α can be evaluated from equation (49). For the next step
in the optimization, we simply use a gradient method to perform a gradient descent, the cost function
is expanded to its second order approximation as

J (α+ δα) ≈ J (α) +

(
∂J

∂α

)T
δα+

1

2
δαT

(
∂2J

∂α2

)
δα. (50)

Inspired by the Gauss-Newton algorithm, here we opt to approximate the Hessian by taking a derivative
of equation (49) with respect to α again but neglecting the ∂2P/∂α2 and ∂2Q/∂α2 terms. This reduces
the complexity and the computational time. It follows that we can then solve equation (50) for an
incremental change in α:

δα = −η
(
∂2J

∂α2

)−1
∂J

∂α
.

17

The step size parameter η keeps the update gradual, improving the stability. Performance could also
be tweaked by altering the cost parameters and the reference state.

4.3 Iterative Learning Control
In perching experiments, we command the robot to follow the pre-generated trajectory. After each
flight iteration, the recorded trajectory is analyzed for the iterative learning controller to compute a set
of corrective commands as inputs for the next flight so that the flight trajectory will eventually converge
to the reference trajectory. The major distinction between a closed-loop controller and the iterative
learning controller is that the former does not primarily learn from prior experiences (except for the
adaptive part; nevertheless, the adaptive algorithm is not time or trajectory specific). The iterative
learning controller, on the other hand, relies on repetition to cope with repetitive disturbances or
systematic errors in the modeling.

The formulation of the iterative control below is inspired from (Schöllig and D’Andrea, 2009;
Schoellig et al., 2012). Herein, the scheme iteratively updates low-level commands (i.e., torque and
thrust) to minimize the difference between the planned trajectory and the observed trajectory. In fact,
more recent work suggests that learning performance of quadrotors performing a slalom trajectory is
significantly improved when the learning is applied to reference position instead of low-level commands
(Mueller et al., 2012). However, such scheme is not directly applicable to our situation, where positions
and body angle are dynamically coupled and cannot be commanded independently as explained in
section (4.2).

To begin, we consider the dynamics of an entire trajectory using a lifted representation, similar to
the approach taken in (Schöllig and D’Andrea, 2009; Schoellig et al., 2012). That is, we discretize and
consolidate the state vectors and the inputs into long vectors as given by the following:

X∗ =
[

X(t1) X(t2) . . . X(tN)
]T

U∗ =
[

U(t1) U(t2) . . . U(tN)
]T
. (51)

The model of the lifted dynamics is given by a function f∗ (·). If we assume a perfect model (which can
be derived from the two-dimensional dynamic in equation (45)), then the reference trajectory X∗ref
can be realized using a feedforward input U∗ff as

Ẋ∗ref = f∗
(
U∗ff

)
. (52)

In practice, it is not anticipated that the model will be perfect. Instead of attempting to find a better
model, we assume that the proposed dynamic model is sufficiently accurate, but the input into the
system can be regarded as a combination of the command input U∗c and the unknown disturbance
input U∗d such that U∗ = U∗c −U∗d, and the ultimate goal of the algorithm is to find the estimate of
the unknown disturbance input Û∗d. When we have an accurate estimate of the unknown disturbance
input, we can achieve the reference trajectory by using the command input U∗c = U∗ff + Û∗d as given
below:

Ẋ∗ = f∗ (U∗)

= f∗ (U∗c −U∗d)

= f∗
(
U∗ff + Û∗d −U∗d

)
. (53)

The calculation of the unknown disturbance input is carried out in an iterative fashion. The current
estimate is implemented for one flight experiment, and the resultant trajectory is analyzed for a new
estimate. To illustrate this procedure in more details, we first define the estimation error at iteration
j as

Ũ∗d,j = Û∗d,j −U∗d. (54)

18

Then the lifted dynamics at the jth iteration can be expanded about the ideal operating point U∗ff ,

Ẋ∗j = f∗
(
U∗ff + Ũ∗d,j

)
≈ f∗

(
U∗ff

)
+

(
d

dU∗
f∗
∣∣∣∣
U∗ff

)
· Ũ∗d,j . (55)

The vector Ẋ∗j on the left hand side of equation (55) can be obtained by post-processing the recorded
trajectory. Let an error vector δj denotes the difference between the measured dynamics Ẋ∗j and the
reference dynamics Ẋ∗ref , equation (55) allows us to write δj as a function of the estimation error Ũ∗d,j
as

δj = Ẋ∗j − Ẋ∗ref =

(
d

dU∗
f∗
∣∣∣∣
U∗ff

)
Ũ∗d,j = F Ũ∗d,j . (56)

It can be seen that matrix F is only a function of the reference trajectory and independent of the
current trajectory, so it only needs to be computed once. At this point, we propose an update law for
the estimate of U∗d for the next iteration:

Û∗d,j+1 = Û∗d,j − FTκδj , (57)

for some positive diagonal matrix κ. It follows that we could express the l2-norm of the error vector
from two consecutive iterations as

δTj+1δj+1 = δTj
(
I − FFTκ

)T (
I − FFTκ

)
δj . (58)

Since FFT is always positive definite, for a sufficiently small κ, the norm of the error vector always
decreases. In other words, we have

δTj+1δj+1 ≤ σδTj δj for ∃ 0 ≤ σ < 1. (59)

In the implementation, F can be computed by representing the robot’s dynamics given by equation
(45) along the reference trajectory using a Linear Time Varying (LTV) configuration.

Ẋ(t) = A(t)X(t) +B(t)U(t), (60)

and the matrix F is simply given by

F =

∂ft1
∂U1

· · · ∂ft1
∂UtN

...
. . .

...
∂ftN
∂U1

· · · ∂ftN
∂UtN

=

 F(1,1) · · · F(1,N)

...
. . .

...
F(N,1) · · · F(N,N)

 , (61)

where the elements can be shown to be

F(m,n) =

0 if m < n

B(tn) if m = n

B(tn)
∑j=m
j=n+1

(∏i=m
i=j A(ti)dt

)
if m > n.

(62)

Once computed, F is used to yield the new estimate of U∗d according to equation (57). In the case that
the whole trajectory is unavailable (for instance, when the robot crashes before completing the entire
trajectory), F can be truncated to match the length of e, and the partial update of Û∗d is obtained.

19

4.4 Consideration of Initial Conditions
In the previous section, it is shown that the norm of the error vector should gradually decrease after
each iteration. However, the presented analysis is based on the assumption that each trajectory always
starts with the same initial conditions such that minimizing the error in Ẋ∗ is sufficient to bring the
actual trajectory close to the reference trajectory. In experiments, where the initial condition involves
a robot hovering at the setpoint, the assumed initial condition is approximately satisfied for the tilt
angle and the initial velocity, but not for the position. In prior work, it was shown that the RMS of the
position error during hovering flights was just below one centimeter (Chirarattananon et al., 2014a).
This means that even if the error vector e becomes zero, the robot could end up attempting to perch
up to one centimeter away from the wall.

To avoid a situation similar to the one mentioned above, we allow the robot to initialize a perching
attempt only when the attitude dynamics are stable as measured by the weighted l2 norm of the
composite variable Ŝτ defined in equation (27). Furthermore, the starting position of the robot is taken
into consideration—the trajectory tracking for perching attempt would not start from the beginning of
the pre-planned trajectory. To elaborate, suppose the robot starts perching at time t0 with X(t0) = X0

and the reference trajectory is defined for Xref (t) for ti ≤ t ≤ tf , we seek to find t′0 that satisfies the
equation

X0 = Xref (t′0) +

ˆ tf

t′0

Ẋref (t)dt, (63)

and command the robot to follow the trajectory from Xref (t′0) to Xref (tf). The idea is that, to a
first order approximation, the extra distance at the beginning would eventually be cancelled out by
the deficit in the initial velocity. As a result, the robot’s trajectory will not match the reference at the
beginning (X (t0) 6= Xref (t′0)), but the discrepancy should theoretically diminish towards the end.

4.5 Implementation in Three Dimensions
In experiments, the tracking controller proposed in section 3 only takes into consideration the direction
of the k̂ axis of the robot and does not directly control the heading direction (yaw orientation) of the
robot. In other words, the robot would need to perform both pitch and roll maneuvers to realize
the reference trajectory depending on its current orientation. In the case that the robot follows a
trajectory to perch on a wall in the positive Î direction, the reference torque input τ̄ points along a
negative Ĵ direction. With the knowledge of the current orientation of the robot and the assumption
that the moment of inertia along the pitch and roll axes are approximately equal (the difference is
approximately 5% Ma et al. (2013)), it is possible to find a combination of pitch and roll torques in
the body frame that points in the negative Ĵ direction with the specified magnitude.

5 Experimental Results

5.1 Apparatus and Experimental Setup
The current prototype of the flapping-wing robot is not fitted with sensors, power source, or controller
units. Without such components, the robot is operated in a laboratory environment and depends
on an external motion capture system to provide position and orientation feedback. Eight VICON
cameras running at 500Hz, covering the tracking volume of 0.3 × 0.3 × 0.3m, track the position of four
retroreflective markers placed on the robot and triangulate the pose of the robot. Control computation
is carried out on a computer running an xPC Target (MathWorks) environment at the rate of 10kHz.
Power is supplied to the robot via a bundle of four 51-gauge copper wires from a high voltage amplifier
that receives a command from the xPC Target with a digital-to-analog converter. The effect of the wire
tether is not taken into consideration due to its unpredictable nature. However, simple calculations
suggest its contribution should not affect the flight dynamics significantly and could be taken care of

20

−
5

0
5

X
 p

o
s
it
io

n
 (

c
m

)

−
5

0
5

Y
 p

o
s
it
io

n
 (

c
m

)

−
1

0
1

adaptive

controller

adaptive

tracking

 controller

Z
 p

o
s
it
io

n
 (

c
m

)

Figure 8: Box plots showing the averages and the standard deviations in positions of the robots
from several flights using the controller from Chirarattananon et al. (2014a) (115 seconds or 13,800
wingbeats) and the proposed adaptive tracking controller (23.5 seconds or 3,820 wingbeats).

by the controller (Fuller et al., 2014). Direct measurements of the robot’s velocity and rotation rates
are not available, so they were substituted by their filtered derivative representations.

5.2 Hovering Flight
To verify that the proposed adaptive tracking controller is capable of stabilizing the robot, we first
commanded the robot to hover around a stationary setpoint. Prior to flight experiments, the robot
had to be verified for its flight capability. This involves the characterization of the robot’s flapping
amplitude at various operating frequencies. After validating that the robot possesses sufficiently large
and symmetrical flapping amplitudes on both wings, the robot needed to be trimmed for flight. The
trimming process starts with short, unstable open-loop flights that last less than 0.4 s each to determine
a set of driving signals that minimize the residual torque exhibited by the robot due to unavoidable
mechanical asymmetries. These were followed by a closed-loop trimming process, in which the adaptive
part of the controller corrected for torque offsets and other parameters further until they converged.

In the absence of mechanical fatigue, the robot mostly stayed close to the setpoint with the position
errors smaller than one body length (see Extension 1). As shown in figure 8, the Root Mean Square
(RMS) errors in position of example hovering flights were found to be comparable to those from
the previous adaptive controller in (Chirarattananon et al., 2014a). The box plots illustrating the
averages and the RMS errors are shown in figure 8. The results shown here are consistent with the
expectation that the tracking controller may not show any significant improvement for stationary
setpoints. Theoretically, the robot is able to stay aloft indefinitely without crashing. In practice, we
attempt to minimize the total operating time to prevent mechanical fatigue as the lifetime of the robot
is approximately a couple minutes (Malka et al., 2014).

5.3 Trajectory Following
To demonstrate the tracking ability of the proposed single-loop controller, we commanded our flapping-
wing robot to follow a smooth trajectory generated by a simplified version of the algorithm described
in section 4.2. The aim here is to compare the trajectory tracking performance of the previous adaptive
controller from (Chirarattananon et al., 2014a) and the proposed tracking controller. The trajectory in
this experiment was generated from three setpoints. The robot was initially set to hover at the starting
position, navigate to the middle point at the specified time, and come to stop at the final waypoint in
1.5 seconds. First to fourth order derivatives of the position at the starting point and end point were
set to zero. The generated trajectory, along with its respective velocity, acceleration, jerk, and snap

21

p
o

s
it
io

n
 (

c
m

)

X
^

−axis

Y
^

−axis

0
1

0
2

0

v
e

lo
c
it
y
 (

c
m

.s
−
1
)

−
5

0
0

5
0

a
c
c
e

le
ra

ti
o

n
 (

m
.s

−
2
)

−
2

0
2

je
rk

 (
m

.s
−
3
)

−
1

0
0

1
0

s
n

a
p

 (
m

.s
−
4
)

−
8

0
0

8
0

0.0 1.5

time (s)

Figure 9: The trajectory generated for the experiment. Its derivatives are comparable to a circular
trajectory with the radius of 5.0 cm and the period of 1.25 s.

0.00 s 0.38 s 0.63 s 0.75 s 0.89 s 1.13 s 1.50 s

Figure 10: A composite image reconstructed from a video footage recorded at 240 frames per second
(see Extension 1). The image shows the positions of the robot at various timestamps on the 1.5-second
trajectory as seen on the Î − K̂ plane.

22

X
 p

o
s
it
io

n
 (

c
m

)

Tracking

Controller
−

2
0

0
2
0

Adaptive
Controller

Tracking
Controller

−
2
0

0
2
0

X
 e

rr
o
r

(c
m

)

Y
 p

o
s
it
io

n
 (

c
m

)

Adaptive

Controller

−
1
0

0
1
0

Reference

−
1
0

0
1
0

Y
 e

rr
o
r

(c
m

)

Z
 p

o
s
it
io

n
 (

c
m

)

2
5

8

−0.5 0 0.5 1 1.5 2
relative time (s)

−
3

0
3

Z
 e

rr
o
r

(c
m

)

Figure 11: The trajectory following flights obtained from using the adaptive controller from Chirarat-
tananon et al. (2014a) and the proposed single-loop controller. Left plots show the position of the robot
with respect to the inertial frame, compared with the reference trajectory. Solid color lines represent
the average trajectories from each controller, while light-colored lines represent individual flights. Box
plots showing the average errors and RMS errors along three directions are shown on the right.

are plotted in figure 9. This trajectory was selected to represent more general trajectories with similar
properties. For instance, a circular trajectory with the radius of 5.0 cm and the period of 1.25 s appears
to have comparable velocity, acceleration, jerk and snap. The generated trajectory is chosen for the
experiments as their first to fourth order derivatives are zero according to the imposed constraints.
Moreover, the tether wire could severely interfere with the flight dynamics in the case of prolonged
cyclic trajectories. We performed trajectory following experiments on this generated trajectory. Five
flights were obtained from each controller.

Figure 10 and Extension 1 show an example of the robot following the pre-defined trajectory. Ten
flight trajectories recorded from the motion capture system achieved from both controllers (five from
each) are illustrated in figure 11. The RMS position errors for these flights are also plotted alongside.
It can be seen that the proposed tracking controller offers significant improvements over the previous
adaptive controller as the RMS errors in position are markedly smaller in all directions. This verifies
that the feedforward component in the tracking controller enables the robot to follow more aggressive
trajectories with greater precision.

23

X
 p

o
s
it
io

n
 (

c
m

)

0
6

1
2

Z
 p

o
s
it
io

n
 (

c
m

)

−
1
.5

0
.5

X
 v

e
lo

c
it
y
 (

c
m

.s
−
1
)

−
1
0

2
0

5
0

θ
 (

d
e
g
)

−
3
0

°
3
0

°
9
0

°

τ
 (

m
−
1
s

−
2
)

−
3
0
0

0
3
0
0

Γ
 (

m
s

−
2
)

0
6

1
2

0.00 0.65

time (s)

Figure 12: A candidate trajectory for perching. The grey lines show a parametrized version of a
hand-designed trajectory. Black lines represent the final trajectory after the optimization.

5.4 Generation of Perching Trajectory
Initially, the perching trajectory is crudely hand-designed with a target distance near 12 cm from the
starting position and the trajectory duration of 0.65 s. This was then parametrized by the polynomial
functions as formulated in equation (47) with NΓ = 8 and Nτ = 12. The parametrized trajectory
is shown as grey lines in figure 12. Next, the trajectory is optimized using the strategy outlined in
section 4.2 and the results are shown as black lines in figure 12. It can be seen that the most evident
difference is in the terminal velocity which is, in fact, undesirably negative before the optimization.
The optimized thrust is smaller at the end of the trajectory at the point when the robot is approaching
to wall. This is in order to reduce the amount of deceleration and preserve the forward momentum.
The resultant trajectory is 11.4 cm long with the projected terminal tilt angle close to 90◦.

5.5 Landing Mechanism
The magnetic wall for perching experiments was constructed from a flexible magnetic sheet manufac-
tured from Ferrite bonded with synthetic rubber. This type of magnet is generally classified to have
very low magnetic pull. The maximum pull (defined as the maximum pull force to a thick flat steel
plate in an ideal laboratory condition) is 1,100 kg·m−2. On the robot, four discs of 6 mil (0.15 mm)
steel shims, each with a diameter of 2 mm, were attached to the landing gear. This brought up the

24

−
3

0
1

iteration 0

−
3

0
1

iteration 1

−
3

0
1

iteration 3

−
3

0
1

iteration 6

−
3

0
1

iteration 8 (successful)

−
3

0
1

iteration 8 (failed)

−12 2

Z
 p

o
s
it
io

n
 (

c
m

)

X position (cm)

Figure 13: Diagrams showing the reconstruction of perching trajectories at various iterations. The
plots show the projection on the Î-K̂ plane. Reference trajectory is drawn in dashed lines.

total weight of the robot from 80 mg to 100 mg. To achieve stable flight with additional components,
the controller had to be tuned to account for the change in mass and moment of inertia.

We experimentally found that one disc of steel shims could hold a weight of up to 230mg. In an
ideal case—neglecting a force required to counter any kinetic energy, a simple calculation reveals that
one disc must be able to support at least ≈ 60 mg to hold the robot to the wall in a static condition.
Taking other factors into consideration, the strength of the magnet and the size of the steel shims offer
appropriate attraction for the landing task. Furthermore, the field of a magnetic sheet is expected to
decay faster than that of a magnetic dipole, which is a cubic function of distance, or r−3 (Jackson
and Jackson, 1962). As a result, the contribution of the magnetic force should be negligible when the
robot is not in contact with the magnetic wall.

5.6 Perching Experiments
Prior to the perching experiments, the robot had be to trimmed and tuned for hovering flights in the
same way as it was for the trajectory following experiments.

25

In the perching attempts, the complication arises as it is impossible to ensure that the robot would
be precisely at the origin where the perching trajectory begins. As a workaround, the consideration of
initial conditions as outlined in section 4.4 takes into account the starting position of the robot and
ensure that the robot would start its trajectory on or somewhere in front of the prescribed perching
trajectory’s starting point. Because of the one-centimeter uncertainty in the actual starting position of
the robot, we defined the start of the trajectory to be at -1.0 cm from the hovering setpoint of the robot
at 0.0 cm. The target vertical wall was placed at 10.4 cm (not 11.4 cm) from the hovering setpoint. The
controller allowed the perching attempt to begin only when the robot is less than one centimeter away
from the hovering setpoint (-1.0 cm ≤ X ≤ 1.0 cm). Thus, given the 11.4-cm prescribed trajectory,
the robot will start the perching attempt in front of the trajectory’s starting point.

The first perching flight (iteration 0) was executed using the adaptive tracking controller alone
without any correction from the ILC algorithm. The reconstruction of this iteration’s trajectory
(projected onto the Î − K̂ plane) is illustrated in figure 14, and the trajectory-versus-time plots are
also shown in figure 14. Possibly due to the lack of sufficient fidelity in the model, particularly for fast
dynamics, the robot only reached the distance of 6.3 cm and the tilt angle of 41◦before falling out of
the air.

Using the recorded trajectory from iteration 0 and the proposed ILC scheme, the first estimate
of U∗d was calculated and incorporated. In iteration 1, the robot could get closer to the wall, i.e., it
achieved the distance of 8.5 cm before losing all forward momentum, at which point the robot had
the tilt angle of 78◦. The corresponding trajectory and some subsequent trajectories are presented in
figure 13-14. It can be seen that, over multiple iterations, the robot went increasingly closer to the
wall before losing the forward momentum, primarily to reduce the terminal cost of the final position
along the Î axis as defined in the objective function in equation (46). Note that the term iteration here
refers to the version of Ûd. There could be many flight attempts in each iteration as some flights might
be discarded and not used for updating the estimate Ûd owing to possible deteriorated performance
explained below.

Due to the nature of the experiment and the delicate character of the robot, it is impossible to
ensure that the physical properties of the robot remain unaltered over the course of several flights.
Sources of the uncertainty include mechanical fatigue of the wing hinges, wings, and actuators (which
unfortunately do occur in the timescale of the experiments), structural damage from crashing to the
ground, and electrical connection failure due to impact and wire fatigue. After subsequent repairs
to the robot, open-loop and closed-loop flight trimming experiments must be repeated—allowing the
adaptive part of the controller to trim the robot for a good operating condition.

On this occasion, both wing hinges on the robot mechanically failed after six iterations just as
the robot was close to achieving a successful vertical landing. The authors replaced both wing hinges
and wings and carried out the trimming process to achieve a steady hover again. It is noted that the
operating point of the repaired robot was different than that of the robot prior to wing hinge failure.

Using the same command resulted in slightly different trajectories compared with those obtained
before wing hinge failure. Nevertheless, we carried on applying the ILC algorithm and updated the
estimate of U∗d from the previous iteration instead of resetting the iterative process. After two subse-
quent iterations (iteration 8), the robot successfully landed on the vertical wall. Out of five landing
attempts using the same estimate of U∗d (hence, all five flights are classified as iteration 8), the robot
managed to land on the vertical surface three times, whereas the other two flights the robot failed to
attach to the wall. One example of a successful attempt is demonstrated in figure 13 and 15(a)-(b),
and Extension 1. In this attempt, the robot first contacted the wall when the tilt angle was around
45◦. A failed perching is also presented in figure 15(c). The recorded trajectory reveals that the
robot missed the target setpoint by 1-2mm. This also suggests that the effect of the magnetic force is
minimal when the robot is not attached to the wall. More quantitative information of the successful
and failed perching trajectories using the same estimate of U∗d can be found on the right hand side of
figure 14. It confirms that the major difference between the successful and failed perching trajectories
is the final position of the robot along the Î-axis. Notice that, for an unknown reason, in one of the
successful flight, the robot dropped a few centimeter from the reference trajectory. We believe that a

26

X
 p

o
s
it
io

n
 (

c
m

)

−
2

1
2

iteration 0
iteration 1
iteration 3
iteration 6

X
 p

o
s
it
io

n
 (

c
m

)

−
2

1
2

iteration 8 (successful)
iteration 8 (failed)
reference

Z
 p

o
s
it
io

n
 (

c
m

)

−
3

0
1

Z
 p

o
s
it
io

n
 (

c
m

)

−
3

0
1

T
ilt

 a
n

g
le

 (
d

e
g

)

−
3

0
9

0

0.00 0.65time (s)

T
ilt

 a
n

g
le

 (
d

e
g

)

−
3

0
9

0
0.00 0.65time (s)

Figure 14: Position and tilt angle of the robot in several vertical landing attempts. (left) The robot
failed to gain enough forward displacement and momentum in early iterations, but improvement is
observed after multiple iterations. (right) Three successful and two failed perching trajectories obtained
from executing identical ILC command. One successful attempt was achieved with a large deviation
from the reference height (Z position). The jumps near the end of the trajectory seen in the plots are
due to losses in motion tracking.

crash prior to that flight may have slightly altered the thrust generation ability of the robot as can be
observed that the robot did not fully reach the altitude setpoint before beginning the perching attempt.
Fortunately, the precise height of the robot is not critical to the perching dynamics, as opposed to the
lateral position and the tilt angle.

6 Conclusion and Discussion
We have shown that a millimeter-scale flapping-wing robot is capable of performing an aggressive
aerial maneuver—perching on a vertical wall. From a control perspective, such a maneuver differs
considerably from hover or slow maneuvers that have been demonstrated before. To land on a vertical
surface, we first re-designed the adaptive tracking flight controller and constructed a nominal perching
trajectory via an optimization method that assumes a simplified dynamics model in two dimensions.
For precise control, we opted to implement an iterative learning control algorithm in addition to
the proposed adaptive flight controller. This learning algorithm computed an updated feedforward
command for the robot after each perching attempt, in order to improve the trajectory tracking
performance in an iterative fashion. Due to stringent payload constraints and scalability challenges,
magnetic force was utilized as the wall attachment mechanism, enabling the robot to perch on a vertical
magnetic surface. The magnetic force is only sufficient to hold the robot when it makes surface contact
and has an insignificant effect on broadening the flight trajectory envelope for successful wall perches.
It is shown that after eight iterations, the proposed control strategies enabled the robot to successfully

27

1 cm

(a) (b)

(c)

Figure 15: (a) An image showing the flapping-wing robot attached to a magnetic wall via the aid of
steel shims adhered to the base of the landing gear. (b) A composite image constructed from a video
footage demonstrating a successful perching flight after eight iterations of learning (see Extension 1).
(c) A composite image constructed from a video footage showing a failed perching flight obtained from
the same set of commands as the successful flight.

land on a vertical surface as desired.
Without the adaptive tracking controller and the learning algorithm used in this paper, the previous

controller is unable to command the robot to accurately follow the prescribed trajectory. Understand-
ably, like most robotic systems, the dynamic model assumed by the general controller is limited in
bandwidth, only captures slow system dynamics, and lacks fidelity for unmodeled high frequency com-
ponents required to perform an aggressive maneuver. Yet, this nominal model is sufficiently accurate
to form a basis for the search for a feasible trajectory, and the learning process to compensate for the
inaccuracies, by repeating the trajectory following attempts, taking into consideration only the first-
order approximations of the dynamics. We show that the robot is able to land on a vertical surface—a
task that requires millimeter-accuracy for a robot in which the position error of its stationary hovering
flight is in the range of one centimeter (Chirarattananon et al., 2014a).

The utilization of magnetic force is convenient for a robot at this scale because its implementation
adds minimal payload. Unfortunately, while it is sufficient to enable demonstrations of aggressive
trajectory-following, it does not allow the robot to autonomously takeoff from the wall’s surface.
A more finely tuned or altogether different attachment mechanism is required. It is nontrivial to
construct a detachable attachment mechanism similar to those seen in (Hawkes et al., 2013; Mengüç
et al., 2014), let alone at this much smaller scale. However, we predict that once a more elaborate
attachment mechanism is developed, the control strategy illustrated in this paper is suitable for direct
application.

6.1 Convergence and Robustness of the Adaptive Controller
As stated in section 5.2, the robot has to undergo a trimming process involving several closed-loop
flight for the parameters to adapt before stable hovering is achieved. The pitch and roll torque offset
values are highly sensitive to how the robot is constructed and vary widely between prototypes. To
demonstrate how quickly those values converge and how they affect the flight performance, we provide
a plot of flight-averaged RMS error in positions of nine consecutive trimming flights in figure 16. In
this circumstance, the flight-capable robot was repaired due to fatigue of wing hinges and wings and
needed new parameter estimates to account for changes in physical properties. The initial non-zero

28

2
4

R
M

S
 p

o
s
it
io

n
e

rr
o

r
(c

m
)

−
0

.4
−

0
.2

p
it
c
h

 t
o

rq
u

e
o

ff
s
e

t
(µ

N
m

)

−
0

.3
−

0
.1

ro
ll

to
rq

u
e

o
ff

s
e

t
(µ

N
m

)

5 s

trimming flight

Figure 16: Plots illustrating the RMS position errors of the robot reduced over continuously over
nine closed-loop trimming flights as the adaptive algorithm adjusted the estimates of pitch and roll
torque offsets. White space indicates breaks between flights and asterisks mark the beginning of each
flight. The initial estimates at the beginning of each flight were manually set according to the previous
estimates.

estimates were chosen according to the open-loop trimming process. The values after convergence are
generally different to those before the repair process. As seen in figure 16, the estimates of pitch and
roll torques are plotted to show that the RMS errors reduced noticeably as the torque offset estimates
from the adaptive controller converged. This corresponds to the robot becoming more stable over nine
flights, totaling the period of over 30 s. The RMS errors decreased to from ∼ 4 cm to an acceptable
value of ∼ 2 cm after estimates of pitch and roll offsets changed by 0.2 µNm.

According to equation (25), we can theoretically predict how significant the position error would
be given the errors in torque offset estimates. We consistently obtain stable flight after parameter
convergence with Kτ ≈ 70 × 10−9 kg.m2.s−1, λ1 ≈ 8.5 s−1, λ2 ≈ 200 s−2, and λ3 ≈ 1, 150 s−3. Near
the hovering condition, where Γ ≈ g, equation (25) predicts that the position error in steady state is
∼ 2.4 cm for a torque offset error of 0.2 µNm. This is in accordance with the two-centimeter reduction
in error after estimates of pitch and roll offsets changed by 0.2 µNm as evidenced in figure 16. We
believe the RMS error of two centimeters after parameter convergence stems from various factors, such
as unmodeled unsteady aerodynamics, latency, wire tether, and other disturbances. Furthermore, the
0.2 µNm error in torque offset estimate is translated to approximately 20◦ error in pitch or roll angle
in the transient state—close to the amount that could destabilize the robot in flight. This explains
why prior to closed-loop experiments, the open-loop trimming procedure is necessary to determine the
torque offsets to with in 0.2 − 0.3 µNm of their true values. To put these numbers into perspective,
the robot is capable of producing a maximum torque in the order of one µNm and the inherent torque
offset could be similar in magnitude, while less than ±0.3 µNm is produced in a regular hovering flight.
Given the small moment of inertia, a 0.1-µNm torque would result in the angular acceleration of about
50 rad.s−1.

Further inspection of equation (25) suggests that error in the estimates of εx and εy do not affect
the flight stability as much as the torque offsets as they influence the convergence of Ŝτ through the

29

term Yτ ã. For ωk ∼ 5 rad.s−1, and ε ≈ 0.2 rad or 10◦, the error in position in steady state is expected
to be 2 mm, an order of magnitude smaller than those caused by the unknown torque offsets.

Alternative to the current adaptive scheme where constant adaptive gains are adopted, optimal
gain based on optimal filtering techniques (Brian and Moore, 2005) could be employed. Since the
performance of the current scheme is adequate, we chose to keep a simple adaptive scheme, while the
optimal approach could be employed for more complicated unknown disturbances in future work.

6.2 Importance of Experimental Learning for Aggressive Maneuvers
The primary role of the learning flights was to compensate for unmodeled dynamics, including actuator
dynamics and aerodynamic effects. We demonstrated that the proposed iterative learning control
method allowed the robot to achieve the perching task after eight learning iterations. However, the
method suffers from a limitation that the learned model is specific to a particular trajectory and cannot
be transferred to other aggressive maneuvers without additional learning attempts.

It is perceivable that an alternative or complementary approach to iterative learning is a com-
prehensive identification of the system. Better understanding of in-flight dynamics could lead to an
accurate simulation environment to assist with the learning process. Thus far, our attempts to better
understand the robot’s dynamics have been challenged by the lack of force/torque sensors with suitable
range and resolution. In-flight identification is complicated by the inherent nonlinear dynamics and
instability of the robot—the stabilizing feedback may interfere with the identification process (Forssell
and Ljung, 1999). Additionally, the motion required for identification often destabilizes the vehicle.
To characterize the damping torque about the pitch or roll axis of the robot, for example, requires the
robot to rotate for a prolonged period and distance which inevitably results in crashes. The lack of
realistic a dynamic model renders flight simulation inaccurate, and therefore, not suitable for use in the
learning process. It is possible that a comprehensive computational fluid dynamic simulations could
alleviate the problem, but the approach is prohibitively expensive computationally and does not offer
insights into the interaction between actuator dynamics and aerodynamics. Taking all these points
into consideration, we believe that the proposed experimental approach is appropriate for realizing an
aggressive trajectory by a small flapping-wing robot, despite some limitations mentioned.

References
Achtelik MW, Lynen S, Chli M and Siegwart R (2013) Inversion based direct position control and
trajectory following for micro aerial vehicles. In: Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on. IEEE, pp. 2933–2939.

Bouabdallah S and Siegwart R (2005) Backstepping and sliding-mode techniques applied to an indoor
micro quadrotor. In: Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on. IEEE, pp. 2247–2252.

Brian DA and Moore JB (2005) Optimal filtering. Dower, Jan .

Bristow DA, Tharayil M and Alleyne AG (2006) A survey of iterative learning control. Control Systems,
IEEE 26(3): 96–114.

Chirarattananon P, Ma KY and Wood RJ (2014a) Adaptive control of a millimeter-scale flapping-wing
robot". Bioinspiration & biomimetics To appear.

Chirarattananon P, Ma KY and Wood RJ (2014b) Fly on the wall. In: Biomedical Robotics and
Biomechatronics (2014 5th IEEE RAS & EMBS International Conference on. IEEE, pp. 1001–1008.

Chirarattananon P, Ma KY and Wood RJ (2014c) Single-loop control and trajectory following of a
flapping-wing microrobot. In: Robotics and Automation (ICRA), 2014 IEEE International Confer-
ence on. IEEE, pp. 37–44.

30

Chirarattananon P and Wood RJ (2013) Identification of flight aerodynamics for flapping-wing micro-
robots. In: Robotics and Automation (ICRA), 2013 IEEE International Conference on. IEEE, pp.
1389–1396.

Cory R and Tedrake R (2008) Experiments in fixed-wing uav perching. In: Proceedings of the AIAA
Guidance, Navigation, and Control Conference. AIAA Reston, VA, pp. 1–12.

Coza C, Nicol C, Macnab C and Ramirez-Serrano A (2011) Adaptive fuzzy control for a quadrotor heli-
copter robust to wind buffeting. Journal of Intelligent & Fuzzy Systems: Applications in Engineering
and Technology 22(5, 6): 267–283.

De Croon G, Groen M, De Wagter C, Remes B, Ruijsink R and Van Oudheusden B (2012) Design,
aerodynamics and autonomy of the delfly. Bioinspiration & biomimetics 7(2): 025003.

Deng X, Schenato L and Sastry SS (2006) Flapping flight for biomimetic robotic insects: Part ii-flight
control design. Robotics, IEEE Transactions on 22(4): 789–803.

Desbiens AL, Asbeck AT and Cutkosky MR (2011) Landing, perching and taking off from vertical
surfaces. The International Journal of Robotics Research : 0278364910393286.

Duhamel PE, Perez-Arancibia NO, Barrows GL and Wood RJ (2013) Biologically inspired optical-flow
sensing for altitude control of flapping-wing microrobots. Mechatronics, IEEE/ASME Transactions
on 18(2): 556–568.

Dydek ZT, Annaswamy AM and Lavretsky E (2013) Adaptive control of quadrotor uavs: A design
trade study with flight evaluations. Control Systems Technology, IEEE Transactions on 21(4):
1400–1406.

Faruque I and Sean Humbert J (2010) Dipteran insect flight dynamics. part 1 longitudinal motion
about hover. Journal of Theoretical Biology 264(2): 538–552.

Forssell U and Ljung L (1999) Closed-loop identification revisited. Automatica 35(7): 1215–1241.

Fuller SB, Karpelson M, Censi A, Ma KY and Wood RJ (2014) Controlling free flight of a robotic
fly using an onboard vision sensor inspired by insect ocelli. Journal of The Royal Society Interface
11(97): 20140281.

Gerdes J, Holness A, Perez-Rosado A, Roberts L, Greisinger A, Barnett E, Kempny J, Lingam D,
Yeh CH, Bruck HA et al. (2014) Robo raven: A flapping-wing air vehicle with highly compliant and
independently controlled wings. Soft Robotics 1(4): 275–288.

Guerreiro BJ, Silvestre C, Cunha R, Cao C and Hovakimyan N (2009) L 1 adaptive control for au-
tonomous rotorcraft. In: American Control Conference, 2009. ACC’09. IEEE, pp. 3250–3255.

Hawkes EW, Christensen DL, Eason EV, Estrada MA, Heverly M, Hilgemann E, Jiang H, Pope
MT, Parness A and Cutkosky MR (2013) Dynamic surface grasping with directional adhesion. In:
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, pp.
5487–5493.

Hehn M and D’Andrea R (2014) A frequency domain iterative learning algorithm for high-performance,
periodic quadrocopter maneuvers. Mechatronics 24(8): 954–965.

Hoburg W and Tedrake R (2009) System identification of post stall aerodynamics for UAV perching.
In: Proceedings of the AIAA Infotech@ Aerospace Conference. pp. 1–9.

Huang H, Hoffmann GM, Waslander SL and Tomlin CJ (2009) Aerodynamics and control of au-
tonomous quadrotor helicopters in aggressive maneuvering. In: Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on. IEEE, pp. 3277–3282.

31

Huang M, Xian B, Diao C, Yang K and Feng Y (2010) Adaptive tracking control of underactuated
quadrotor unmanned aerial vehicles via backstepping. In: American Control Conference (ACC),
2010. IEEE, pp. 2076–2081.

Hunt G, Mitzalis F, Alhinai T, Hooper PA and Kovac M (2014) 3d printing with flying robots. In:
Robotics and Automation (ICRA), 2014 IEEE International Conference on. IEEE, pp. 4493–4499.

Ioannou P, Annaswamy AM, Narendra K, Jafari S, Rudd L, Ortega R, Boskovic J et al. (2014) -
adaptive control: Stability, robustness, and interpretations. Automatic Control, IEEE Transactions
on 59(11): 3075–3080.

Jackson JD and Jackson JD (1962) Classical electrodynamics, volume 3. Wiley New York etc.

Karpelson M, Wei GY and Wood RJ (2009) Milligram-scale high-voltage power electronics for piezo-
electric microrobots. In: Robotics and Automation, 2009. ICRA’09. IEEE International Conference
on. IEEE, pp. 2217–2224.

Kovač M, Germann J, Hürzeler C, Siegwart RY and Floreano D (2009) A perching mechanism for
micro aerial vehicles. Journal of Micro-Nano Mechatronics 5(3-4): 77–91.

Krishnan A and Sane SP (2014) Visual feedback influences antennal positioning in flying hawk moths.
The Journal of experimental biology 217(6): 908–917.

Lee D, Kim HJ and Sastry S (2009) Feedback linearization vs. adaptive sliding mode control for a
quadrotor helicopter. International Journal of control, Automation and systems 7(3): 419–428.

Lee T, Leoky M and McClamroch NH (2010) Geometric tracking control of a quadrotor UAV on SE(3).
In: Decision and Control (CDC), 2010 49th IEEE Conference on. IEEE, pp. 5420–5425.

Lentink D, Jongerius SR and Bradshaw NL (2010) The scalable design of flapping micro-air vehicles
inspired by insect flight. In: Flying insects and robots. Springer, pp. 185–205.

Lupashin S, Schöllig A, Sherback M and D’Andrea R (2010) A simple learning strategy for high-
speed quadrocopter multi-flips. In: Robotics and Automation (ICRA), 2010 IEEE International
Conference on. IEEE, pp. 1642–1648.

Ma KY, Chirarattananon P, Fuller SB and Wood RJ (2013) Controlled flight of a biologically inspired,
insect-scale robot. Science 340(6132): 603–607.

Ma KY, Chirarattananon P and Wood RJ (2015) Design and fabrication of an insect-scale flying robot
for control autonomy. In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on. IEEE.

Ma KY, Felton SM and Wood RJ (2012) Design, fabrication, and modeling of the split actuator micro-
robotic bee. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on. IEEE, pp. 1133–1140.

Madani T and Benallegue A (2008) Adaptive control via backstepping technique and neural networks
of a quadrotor helicopter. In: Proceedings of the 17th World Congress of The Internaional Federation
of Automatic Control.

Malka R, Desbiens AL, Chen Y and Wood RJ (2014) Principles of microscale flexure hinge design for
enhanced endurance. In: Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on. IEEE, pp. 2879–2885.

Mellinger D and Kumar V (2011) Minimum snap trajectory generation and control for quadrotors. In:
Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, pp. 2520–2525.

32

Mellinger D, Michael N and Kumar V (2012) Trajectory generation and control for precise aggressive
maneuvers with quadrotors. The International Journal of Robotics Research 31(5): 664–674.

Mengüç Y, Röhrig M, Abusomwan U, Hölscher H and Sitti M (2014) Staying sticky: contact self-
cleaning of gecko-inspired adhesives. Journal of The Royal Society Interface 11(94): 20131205.

Mueller FL, Schoellig AP and D’Andrea R (2012) Iterative learning of feed-forward corrections for high-
performance tracking. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on. IEEE, pp. 3276–3281.

Nicol C, Macnab C and Ramirez-Serrano A (2011) Robust adaptive control of a quadrotor helicopter.
Mechatronics 21(6): 927–938.

Oppenheimer MW, Doman DB and Sigthorsson D (2009) Dynamics and control of a minimally actu-
ated biomimetic vehicle: Part ii-control. In: Proceedings of the AIAA Guidance, Navigation, and
Control Conference.

Orlowski CT and Girard AR (2012) Dynamics, stability, and control analyses of flapping wing micro-air
vehicles. Progress in Aerospace Sciences 51: 18–30.

Orsag M, Korpela C and Oh P (2013) Modeling and control of mm-uav: Mobile manipulating un-
manned aerial vehicle. Journal of Intelligent & Robotic Systems 69(1-4): 227–240.

Richter C and Lipson H (2011) Untethered hovering flapping flight of a 3d-printed mechanical insect.
Artificial life 17(2): 73–86.

Ristroph L, Bergou AJ, Berman GJ, Guckenheimer J, Wang ZJ and Cohen I (2012) Dynamics, control,
and stabilization of turning flight in fruit flies. In: Natural locomotion in fluids and on surfaces.
Springer, pp. 83–99.

Ristroph L, Ristroph G, Morozova S, Bergou AJ, Chang S, Guckenheimer J, Wang ZJ and Cohen I
(2013) Active and passive stabilization of body pitch in insect flight. Journal of The Royal Society
Interface 10(85): 20130237.

Schoellig AP, Mueller FL and D’Andrea R (2012) Optimization-based iterative learning for precise
quadrocopter trajectory tracking. Autonomous Robots 33(1-2): 103–127.

Schöllig A and D’Andrea R (2009) Optimization-based iterative learning control for trajectory tracking.
In: Proceedings of the European control conference (ECC). pp. 1505–1510.

Slotine JJE, Li W et al. (1991) Applied nonlinear control, volume 199. Prentice-Hall Englewood Cliffs,
NJ.

Sreetharan PS, Whitney JP, Strauss MD and Wood RJ (2012) Monolithic fabrication of millimeter-
scale machines. Journal of Micromechanics and Microengineering 22(5): 055027.

Taha HE, Hajj MR and Nayfeh AH (2012) Flight dynamics and control of flapping-wing MAVs: a
review. Nonlinear Dynamics 70(2): 907–939.

Teoh ZE, Fuller SB, Chirarattananon P, Prez-Arancibia N, Greenberg JD and Wood RJ (2012) A
hovering flapping-wing microrobot with altitude control and passive upright stability. In: Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE, pp. 3209–3216.

Van Nieuwstadt MJ and Murray RM (1997) Real time trajectory generation for differentially flat
systems .

Williams RJ and Zipser D (1989) A learning algorithm for continually running fully recurrent neural
networks. Neural computation 1(2): 270–280.

33

Wood R, Steltz E and Fearing R (2005) Optimal energy density piezoelectric bending actuators.
Sensors and Actuators A: Physical 119(2): 476–488.

Wood RJ, Finio B, Karpelson M, Ma K, Pérez-Arancibia NO, Sreetharan PS, Tanaka H and Whitney
JP (2012) Progress on ’pico’ air vehicles. The International Journal of Robotics Research 31(11):
1292–1302.

Zhang X, Tong T, Brooks D andWei GY (2014) Evaluating adaptive clocking for supply-noise resilience
in battery-powered aerial microrobotic system-on-chip. Circuits and Systems I: Regular Papers,
IEEE Transactions on 61(8): 2309–2317.

Appendix A: Index to Multimedia Extensions

Archives of IJRR multimedia extensions published prior to 2014 can be found at http://www.ijrr.org.
After 2014 all videos are available on the IJRR YouTube channel at http://www.youtube.com/user/ijrrmultimedia

Table 1: Table of Multimedia Extensions
Extension Media Description
1 Video Open-loop, hovering, trajectory following, and perching flights

34

