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A direct optic flow-based strategy for inverse flight altitude
estimation with monocular vision and IMU measurements

Pakpong Chirarattananon∗

Abstract

With tiny and limited nervous systems, insects demonstrate a remarkable ability to fly through
complex environments. Optic flow has been identified to play a crucial role in regulating flight conditions
and navigation in flies and bees. In robotics, optic flow has been widely studied thanks to the low
computational requirements. However, with only monocular visual information, optic flow is inherently
devoid of a scale factor required for estimating the absolute distance. In this paper, we propose a strategy
for estimating the flight altitude of a flying robot with a ventral camera by combining the optic flow with
measurements from an inertial measurement unit. Instead of using the prevalent feature-based approach
for calculation of optic flow, we implement a direct method that evaluates the flow information via image
gradients. We show that the direct approach notably simplifies the computation steps compared to the
feature-based method. When combined with an extended Kalman filter for fusion of IMU measurements,
the flight altitude can be estimated in real time. We carried out extensive flight tests in different settings.
Among 31 hovering and vertical flights near the altitude of 40 cm, we achieved the RMS errors in the
altitude estimate of 2.51 cm. Further analysis of factors that affect the quality of the flow and the
distance estimate is also provided.

1 Introduction
In recent years, we have witnessed a dramatic growth of research and deployment of Micro Aerial Vehicles
(MAVs) owing to numerous foreseeable applications. At decimeter scale, multi-rotor systems have thrived
thanks to its mechanical simplicity and high maneuverability. Yet, small flying robots are still severely lim-
ited in terms of payload capabilities and computational power [1, 2, 3]. There remain several key challenges
associated with the energetic cost of staying airborne, autonomous navigation through unstructured envi-
ronments, etc., that prevent more pervasive uses of these small robots [4, 5]. These issues pose considerable
complications towards the goal of autonomous operations. Fortunately, for several tasks related to sensing,
localization, and navigation, biological systems provide us further inspirations for tackling the mentioned
challenges.

With poor resolution compound eyes and only tiny nervous systems, insects demonstrate exceptional
aerodynamic maneuvers such as grazing landing and agile collision avoidance. Scientists have discovered
that birds and insects frequently use optic flow in short range navigation [6], flight speed regulation [7],
landing [8], as well as obstacle avoidance [9]. Instead of directly measuring the distance, the optic flow
technique measures the image motion, providing the ratio of flight speed to the distance to the surface
[10]. Inspired by insects, researchers have pioneered the use of optic flow for robotics applications, aiming
to leverage the low computational requirement and reducing the sensory components, which are crucial
considerations for small aerial vehicles such as a 100-mg flapping-wing robot [11] or a 39-gram pocket-sized
quadrotor [12].

In robotics, optic flow-based algorithms have been proposed and implemented in mobile robots and aerial
robots for guidance and navigation [13]. In [14], Fuller and Murray devised an insect-inspired controller for
detecting patterns of optic flow for a mobile robot with flight-like dynamics to navigate a corridor. Using the
concept of time-to-contact, Izzo and de Croon introduced a strategy for landing on a surface using ventral
optic flow based on the expansion of imaged ground [15]. In [3], a 2.6-g omnidirectional vision sensor enabled
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a 30-g miniature coaxial helicopter to control flight speed and stabilize the heading using wide-field optic
flow. In addition to this, several optical devices have been developed to facilitate the use of insect-inspired
strategies in robots. Examples include a miniature artificial compound eye with a panoramic field of view
[16], a robust minimalistic high frame rate optic flow sensor [17], an open hardware camera with a CMOS
image sensor for optic flow estimates designed for MAVs [18], and a 33-mg 1-D optic flow sensor for a flying
microrobot [11].

Recently, researchers have explored the integration of optic flow information with other known quantities
[19] or measurements from other sensors to exploit the “scaling” information, allowing true velocity or distance
to be estimated [20, 18, 21, 22]. In [20], the opto-aeronautic algorithm was developed for estimation of wind
speed and flight height using inputs from optic flow and air velocity sensors, whereas in [18], an ultrasonic
sensor was incorporated. In other instances, inertial measurement units (IMUs) are chosen as they often
exist for attitude stabilization. The fusion of measurements from two sensors usually requires a robust
efficient strategy. In [21, 23], extended Kalman filters (EKF) were employed to recover a scale factor. In
[22], the authors formulated a nonlinear estimation scheme for the task, allowing the transient response of
the observer to be tuned. Based on the knowledge of control inputs, optic flow was used to robustly estimate
the distance for landing in [19].

Several researchers have also demonstrated other novel methods that use optic flow in aid of the distance
estimation or landing tasks. By imposing the control to ensure a constant time-of-flight and measuring the
acceleration, the distance can be estimated with the approached proposed in [24]. Using only the knowledge
of the control inputs and monitoring the oscillations of the robot without any knowledge of the robot’s
acceleration, the optic flow-based flight controller was shown capable of providing the estimate of flight
altitude in hover as well as during landing [25].

Compared to popular alternative keyframe-based visual-SLAM methods that involve building and main-
taining a map of visual features [26, 27, 28], these optic-flow based approaches are potentially less computa-
tionally intensive and more robust against failures as they do not need prolonged continuous feature tracking
[21, 22].

Thus far, the majority of research involving combining optic flow and inertial measurements calculate the
flow by detecting and tracking features between consecutive image frames using an established Lucas-Kanade
(LK) algorithm [9, 25, 22]. The LK method is suitable for computing optic flow for a sparse feature set [29].
It was suggested that the required feature extraction and matching steps occupy most of the processing time,
up to 85% in the case of [21]. Alternative to the LK method, there exists an alternative optic flow method
developed by Horn et. al. [30], which directly provides time-to-contact information from image gradients
without the need to identify and track image features. This principle has been extended to estimate the
time-to-contact (without resolving for a scale factor) for motion control of mobile robots in [31].

In this paper, we aim to exploit this direct optic flow method in the context of flight altitude estimation.
To achieve that, we consider a flying robot with a downward-looking monocular camera. We outline a
theoretical basis to relate the motion of the robot and its altitude to the optic flow from the camera.
Detailed analysis is included to identify factors that affect the performance of the computed flow. Then we
propose an estimation routine based on a Kalman filter framework to incorporates the measurements from
IMU to provide the scale factor needed to estimate the absolute distance. Static and flight experiments were
performed to verify the models and test the estimation method. Further detailed analysis of the results is
then discussed. In summary, our key contributions are threefold: (i) The modeling and implementation of the
direct optic flow method in the context of a flying robot with a monocular vision. That is, we offer a model
relating the expected optic flow to the motion of a robot flying over a flat terrain; (ii) Analysis of camera
settings and flight parameters that have critical consequences to the accuracy of the optic flow data; (iii)
An extended Kalman filter for estimating the inverse of flight altitude with a known observability condition.
While alternative implementations with have been previously shown [24, 22], our method is simple, highly
accurate at low altitude and robust against vibrations from flight.

The next section begins with a brief introduction of optic flow and the descriptions on how the LK
method and the direct approach can be applied to deduce the motion (up to a scale factor) of a flying
robot with a ventral vision. The analysis includes the introduction of three dimensionless quantities that are
relevant to the accuracy of the computed flow. Section 3 shows a formulation of the inverse flight altitude
and other flow measurements in the state-space representation form suitable for an EKF. An analytical
condition for observability is provided. In section 4, we perform two sets of experiments to demonstrate
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Figure 1: Definitions of the camera frame, the image plane, and the inertial frame.

the advantage of the direct optic flow approach over the LK method and to verify the importance of the
introduced dimensionless quantities. Flight experiments are carried out in section 5 to examine our proposed
estimation framework. Finally, conclusion and further discussions are provided in section 6.

2 Optic Flow

Suppose a stationary point of interest P =
[
X Y Z

]T in the inertial frame is projected onto the the
location (u, v) on the camera plane as depicted in figure 1. Let I (u, v, t) represents the intensity of an image
pixel at this position at time t. Due to the movement of the camera, we expect the image of point P between
two subsequent images to move from (u, v) to (u+ ∆u, v + ∆v). Under the constant brightness assumption
or optic flow constraint, it is expected that I (u, v, t) = I (u+ ∆u, v + ∆v, t+ ∆t) [10]. To the first order
approximation [32], it follows that

∂I

∂u

du

dt
+
∂I

∂v

dv

dt
+
∂I

∂t
= 0, (1)

where du/dt and dv/dt are components of the optic flow field.

2.1 Optic flow and camera motion
To relate the motion of a camera with respect to the inertial frame to the resultant optic flow, we consider a
camera with a focal length f located at the point Pc =

[
Xc Yc Zc

]T defined in the inertial frame o−x̂ŷẑ
as shown in figure 1. Let the coordinate frame associated to the camera be oc− x̂cŷcẑc . The rotation matrix
R =

[
x̂c ŷc ẑc

]
relates the orientation of the inertial frame and the camera frame. The image plane is

perpendicular to the camera axis (ẑc) at the distance f (focal length) away from the origin oc. According to
this arrangement, the point P is projected onto the image plane at the position (u, v) given by

u = f
RT (P − Pc) · e1

RT (P − Pc) · e3
= f

x̂Tc (P − Pc)
ẑTc (P − Pc)

,

v = f
RT (P − Pc) · e2

RT (P − Pc) · e3
= f

ŷTc (P − Pc)
ẑTc (P − Pc)

, (2)

where ei’s are basis vectors (e.g., e1 =
[

1 0 0
]T ).

If we denote the rotational rate of the frame oc with respect to itself as ω =
[
ωx ωy ωz

]T , the time
derivatives of the camera frame axes become ˙̂xc = ωz ŷ − ωy ẑc, ˙̂yc = ωxẑ − ωzx̂c, and ˙̂zc = ωyx̂ − ωxŷc.
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Assuming that point P is stationary with respect to the inertial frame (Ṗ = 0), it can be shown that the
time derivatives of the image location (u, v), or optic flow, are

du

dt
= − x̂Tc Ṗc

ẑTc (P − Pc)
f +

ẑTc Ṗc
ẑTc (P − Pc)

u+ ωzv − ωy
f2 + u2

f
+ ωx

uv

f

dv

dt
= − ŷTc Ṗc

ẑTc (P − Pc)
f +

ẑTc Ṗc
ẑTc (P − Pc)

v − ωzu+ ωx
f2 + v2

f
− ωy

uv

f
. (3)

From this point, we consider the scenario where the camera is pointing towards the ground such that the
camera axis is almost vertical. Define d as the distance from the origin of the camera frame to the ground
plane along the camera axis, it turns out that the projection of point P along the camera axis, or ẑTc (P − Pc),
is

ẑTc (P − Pc) = d

(
1−

R31

R33

u
f + R32

R33

v
f

1 + R31

R33

u
f + R32

R33

v
f

)
. (4)

Furthermore, in the case that the camera axis is almost vertical, such as a downward-looking camera attached
to a hovering quadrotor, we have R31, R32 � R33. Keeping only the first order terms (see [33] for a complete
derivation), equation (4) together with equation (3) simplify to

du

dt
= − (ϑx + ωy) f +

(
ϑz − ϑx

R31

R33

)
u+

(
ϑz
R31

R33
− ωy

)
u2

f
−
(
ϑx
R32

R33
− ωz

)
v +

(
ϑz
R32

R33
+ ωx

)
uv

f
,

dv

dt
= − (ϑy − ωx) f +

(
ϑz − ϑy

R32

R33

)
v +

(
ϑz
R32

R33
+ ωx

)
v2

f
−
(
ϑy
R31

R33
+ ωz

)
u+

(
ϑz
R31

R33
− ωy

)
uv

f
,

(5)

where we have introduced ϑx = x̂Tc Ṗc/d, ϑy = ŷTc Ṗc/d and ϑz = ẑTc Ṗc/d. These quantities, which from now
on will be referred to as visual observables [25] (also defined as apparent egovelocity in [20]). They provide
velocity information of the camera frame up to a scale factor (d).

2.2 Lucas-Kanade optic flow algorithm
Equation (5) relates the optic flow (du/dt,dv/dt) to the motion and attitude of the camera. A number of
previous works use feature extraction methods to initially detect features on the image and then employ
the Lucas-Kanade tracker (LK) [34, 32] to determine the optic flow between consecutive image frames
[13, 23, 22, 25, 24]. To estimate the visual observables with the LK method, we simplify equation (5) by
neglecting ϑx R31

R33
u and ϑy R32

R33
v terms under the assumption that R31, R32 � R33. For each tracked feature

Ψi = [ui, vi]
T , it satisfies

Ψi =
d

dt

[
ui
vi

]
≈



−f 0
0 −f
ui vi
u2
i /f uivi/f

uivi/f v2
i /f

−vi 0
0 −ui



T

︸ ︷︷ ︸
Λi



ϑx + ωy
ϑy − ωx
ϑz

ϑzR31/R33 − ωy
ϑzR32/R33 + ωx
ϑxR32/R33 − ωz
ϑyR31/R33 + ωz


︸ ︷︷ ︸

b

, (6)

where we have defined a 2 × 7 matrix Λi and a vector of unknowns b. With multiple features, we can
construct Ψ =

[
Ψ1 Ψ2 . . .

]T , Λ=
[

Λ1 Λ2 . . .
]T and express the equation as a linear least-squares

problem: Ψ = Λb to solve for b. The approach enables us to efficiently compute, for example, ϑx + ωy,
ϑy − ωx, and ϑz using the optic flow data from various locations on the image. With the knowledge of the
angular velocities from the IMU measurements, ϑx and ϑy are readily obtained.
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2.3 Direct optic flow method
Instead of relying on feature detection and tracking method, it has been shown in [30, 31] that we can directly
combine the optic flow constraint in equation (1) with the equation describing the camera motion (in the
scenario described in figure 1, this corresponds to equation 5). If we let Iij denote the pixel intensity at
I (ui, vj , t), the result directly relates the image gradients to the visual observables and the camera’s attitude:

−∂Iij
∂t︸ ︷︷ ︸

Υij

=



− (∂Iij/∂u) f
− (∂Iij/∂v) f

(∂Iij/∂u)u+ (∂Iij/∂v) v
(∂Iij/∂u)u2/f + (∂Iij/∂v)uv/f
(∂Iij/∂u)uv/f + (∂Iij/∂v) v2/f

− (∂Iij/∂u) v
− (∂Iij/∂v)u



T

︸ ︷︷ ︸
χij



ϑx + ωy
ϑy − ωx
ϑz

ϑzR31/R33 − ωy
ϑzR32/R33 + ωx
ϑxR32/R33 − ωz
ϑyR31/R33 + ωz


︸ ︷︷ ︸

b

, (7)

where we have defined a scalar Υij , a 1 × 7 matrix χij , and a vector of unknowns b. Once again, we have
neglected two terms: ϑx R31

R33
u and ϑy R32

R33
v to arrive at equation (7). Similar to equation (6), this equation can

be directly solved for b using the least-squares method in the form Υ = χb (with Υ =
[

Υ11 Υ12 ...
]T and

χ =
[
χ11 χ12 ...

]T ) using the values of Iij ’s from consecutive image frames. In contrast to the LK
method, this direct method does not require the feature tracking process. Featureless areas in the image
produce pixels with the values of ∂I/∂t, ∂I/∂u, and ∂I/∂v close to zero. Consequently, these points do not
invalidate equation (7). This significantly reduces the computational requirement of the process.

2.4 Effects of pixelation, fame rate, and feature size on the accuracy of visual
observables

In this section, we inspect the effects of camera pixelation, feature size, and frame rate on the accuracy
of the optic flow estimate. To understand the relationship between different parameters, we consider a
simplified situation where a hypothetical one-dimensional camera (the camera produces a one-dimensional
array of pixels instead of the typical two-dimensional arrays) resides in a two-dimensional plane (o − x̂ẑ).
This setting can be regarded as a simplified version of the setup in figure 1.

2.4.1 Horizontal motion

Suppose the camera stays at a constant distance d from the ground, but it traverses laterally (along the
x̂c-axis) at speed vx. Furthermore, let the camera x̂c-axis coincides with the x̂-axis of the inertial frame.
and L be a length that describes the dominant lengthscale of the pattern on the floor. Assuming a uniform
ideal lighting condition and a purely sinusoidal pattern on the floor, the brightness of the point P (x) can
be written as I0

2

[
sin
(
2π xL

)
+ 1
]
. Without loss of generality, the pixel intensity at point u on the image can

be expressed as

I (u, t) =
I0
2

[
sin

(
2π

(
ud

fL
+
vxt

L

))
+ 1

]
, (8)

where f is the camera’s focal length. Notice that the pixel brightness varies overtime as the camera moves at
speed v in the direction parallel to the ground. In principle, to calculate the visual observable ϑx according
to equation (7), we obtain ∂I/∂t and ∂I/∂u as

∂I

∂t
=

2πv

L

I0
2

cos

(
2π

(
ud

fL
+
vxt

L

))
∂I

∂u
=

2πd

fL

I0
2

cos

(
2π

(
ud

fL
+
vxt

L

))
, (9)

and ϑx is found to be

ϑx =
1

f

∂I

∂t
/
∂I

∂u
=
vx
d
, (10)
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as anticipated.
In practice, however, the camera sensor has a finite pixel size. If we let w denote the width of each pixel,

the image brightness of a pixel located at u is averaged over the distance w such that

Ī (u, t) =
1

w

∫ u+w/2

u−w/2
I (u, t) du

=
I0
2

[
fL

πdw
sin

(
πdw

fL

)
sin

(
2π

(
ud

fL
+
vt

L

))
+ 1

]
. (11)

Here, we introduce the notation δ [·] to represent the difference between the ideal value and the practical
value of a quantity of interest. The difference between I (u, t) and Ī (u, t), or δ [I (u, t)], is the consequence
of pixelation. We find that

δ [I (u, t)] = Ī (u, t)− I (u, t) =

[
fL

πdw
sin

(
πdw

fL

)
− 1

]
sin

(
2π

(
ud

fL
+
vt

L

))
. (12)

To numerically evaluate the time and spatial derivatives of the pixel value for the calculation of visual
observables, we consider the central difference:

∆

∆t
Ī (u, t) =

fp
2

(
Ī

(
u, t+

1

fp

)
− Ī

(
u, t− 1

fp

))
,

∆

∆u
Ī (u, t) =

1

2w

(
Ī (u+ w, t)− Ī (u− w, t)

)
. (13)

where fp is the camera’s frame rate. Based on the previous definition of δ [·], it follows that δ [∂I/∂t] =
∆
∆t Ī (u, t)− ∂I/∂t and δ [∂I/∂u] = ∆

∆u Ī (u, t)− ∂I/∂u. After some algebraic manipulation, it can be shown
that

δ

[
∂I

∂t

]
/
∂I

∂t
=

(
fL

πdw
sin

(
πdw

fL

))(
fpL

2πv
sin

(
2πvx
fpL

))
− 1,

δ

[
∂I

∂u

]
/
∂I

∂u
=

(
fL

πdw
sin

(
πdw

fL

))(
fL

dw
sin

(
dw

fL

))
− 1. (14)

From equations (12) and (14), it can be seen that the numerical errors of ∂I/∂t and ∂I/∂t can be quantified
using two dimensionless quantities πdw/fL and 2πv/fpL. For the sake of simplicity, we define γd = πdw/fL
and γx = 2πvx/fpL. Physically, γd represents the ratio of the pixel size with respect to the feature size as
expressed in the image frame, whereas γx is the ratio of the camera movement to the feature size between
consecutive frames. Both quantities in equation (14) approach zero as γd, γx → 0. Subsequently, we can
approximate the error in the calculated visual observable due to the pixelation and numerical differentiation
as

(δ [ϑx] /ϑx)
2 ≈

(
δ

[
∂I

∂t

]
/
∂I

∂t

)2

+

(
δ

[
∂I

∂u

]
/
∂I

∂u

)2

. (15)

For illustrative purposes, we consider the case where γd, γx → 0. It follows that equation (15) simplifies to

(δ [ϑx] /ϑx)
2 ≈

(
γ2
d

6
+
γ2
x

6

)2

+

(
γ2
d

6

(
1 +

1

π2

))2

. (16)

This suggests that both γd and γx directly affects the estimation of ϑx. We anticipate the accuracy of the
estimate of ϑx to deteriorate as, for example, the feature size becomes too small compared with the altitude,
or the camera moves excessively fast relative to the frame rate.

2.4.2 Vertical motion

In this case, we assume the camera, with the focal length f , is in an identical situation to the previous
scenario, but it traverses vertically instead of horizontally. The expression for an image intensity is similar
to equation (8):

I (u, z, t) =
I0
2

[
sin

(
2π

uz

fL

)
+ 1

]
, (17)
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where z = z (t) such that ż (t) = vz. Partially differentiating equation (17) with respect to t and u yields the
solution for the corresponding visual observables according to equation (7) as ϑz = − (∂I/∂t) / (u∂I/∂u).
The effects of pixelation and sampling, nevertheless, only allow us to obtain the estimates of ∂I/∂t and
u∂I/∂u through the numerical differentiation in a similar fashion to equation (13). Employing the same
method, it can be shown that

δ

[
∂I

∂t

]
/
∂I

∂t
≈
(
fL

πdw
sin

(
πdw

fL

))(
fpfL

2πuvz
sin

(
2πuvz
fpfL

))
− 1,

δ

[
∂I

∂u

]
/
∂I

∂u
=

(
fL

πdw
sin

(
πdw

fL

))(
fL

dw
sin

(
dw

fL

))
− 1, (18)

where d is the instantaneous height of the camera, i.e., z (t) = d (t). Notice that the expression of δ
[
∂I
∂t

]
/∂I∂t

in equation (18) is distinct from the one in equation (14) owing to the presence of u. To further understand
the discrepancy brought by the discretization, we define u∗ = maxu, as the maximum value of u, which is
limited by the camera sensor’s size, and γz = 2πvzu

∗/fpfL . In the limit that γd, γz → 0, we find that

(δ [ϑz] /ϑz)
2 ≈

(
γ2
d

6
+

1

6

( u
u∗
γz

)2
)2

+

(
γ2
d

6

(
1 +

1

π2

))2

≤
(
γ2
d

6
+
γ2
z

6

)2

+

(
γ2
d

6

(
1 +

1

π2

))2

. (19)

The uncertainty of ϑz has the same structure as that of ϑx in equation (16). However, the value of γd =
πdw/fL, which is a function of the altitude, is now time-varying.

3 Estimation of Inverse Distance
In contrast to stereo vision, information from monocular vision such as optic flow or visual velocity is
inherently devoid of a scale factor. The scale ambiguity can be resolved by fusing the visual observable from
optic flow with acceleration measurements from the IMU. To begin, we evaluate the time derivative of d
from the definition (Pc + dẑc) · e3 in section 2.1 as

ḋ = −
(
ϑz + (ϑx + ωy)

R31

R33
+ (ϑy − ωx)

R32

R33

)
d. (20)

Define α = d−1 as the approximate inverse distance of the camera from the ground, with the assumption
that ẑ and ẑc are almost parallel (R31, R32 � R33), equation (20) becomes

α̇ ≈ ϑzα. (21)

Subsequently, we obtain the time derivative of the visual observables according to the definitions given in
section 2.1:

ϑ̇x ≈ ωzϑy − ωyϑz +
x̂Tc P̈c
d

+ ϑxϑz

ϑ̇y ≈ ωxϑz − ωzϑx +
ŷTc P̈c
d

+ ϑyϑz

ϑ̇z ≈ ωyϑx − ωxϑy +
ẑTc P̈c
d

+ ϑ2
z. (22)

Notice that the terms with P̈c represent the acceleration of the camera in the camera frame. In the cir-
cumstance where the camera and an IMU are part of the same object, these terms are equivalent to the
readings from the accelerometers (ax, ay, and az) combined with the projected gravity (where the angles,
also used for flight attitude control, are obtained from fusion algorithms such as [35]). For instance, we have
x̂Tc P̈c = ax − R31g, where ax is the the reading from the x̂ axis of the accelerometer and R31 is approxi-
mately the pitch angle of the robot as internally estimated by the IMU. Treating X =

[
α ϑx ϑy ϑz

]T
7
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as a state variable, its dynamics are inherently nonlinear. Nevertheless, we can still express Ẋ in the form
resembling the state-space representation:

d

dt


α
ϑx
ϑy
ϑz


︸ ︷︷ ︸

Ẋ(t)

=


ϑz 0 0 0

ax −R31g ϑz ωz −ωy
ay −R32g −ωz ϑz ωx
az −R33g ωy −ωx ϑz


︸ ︷︷ ︸

F (t)


α
ϑx
ϑy
ϑz

 ,
︸ ︷︷ ︸

X(t)

(23)

where F (t) functions as a state matrix. The corresponding output vector of the system Y contains the
visual observables as estimated by the algorithm in section 2:

Y =
[
ϑx ϑy ϑz

]T
=
[

03×1 I3×3

]︸ ︷︷ ︸
C

X, (24)

where C is an output matrix. Together, equations (23) and (24) describe the nonlinear dynamics of the state
variable in a state-space representation form .

3.1 Extended Kalman filter
The dynamics of the system described by equations (22) and (20) are nonlinear in nature. While we can
directly calculate the visual observables directly from the captured images and IMU measurements, the
distance d, or its inverse α, is not directly measured. In theory, an observer can be designed to estimate
α. In the case of a linear system, Kalman filter can be employed to recursively find an optimal estimate of
the state vector. Nonlinear systems similar to our proposed system typically requires nonlinear observers or
other variants of Kalman filters such as extended Kalman filter or unscented Kalman filter. By expressing
the dynamics of the state vector in the standard state-space representation as in (23) and (24), it allows us to
promptly estimate the state vector using the extended Kalman filter. This approach significantly simplifies
the computation as well as the hardware implementation while providing a decent performance.

To employ the Kalman framework, we discretize the system in equations (23) and (24) using the forward
Euler method [36]. Let T be a sample time and k be a time index such that Xk+1 − Xk ≈ Ẋ (tk)T =
F (tk)TX (tk). The discrete-time state-space form of the system is

Xk+1 = (I + FkT )︸ ︷︷ ︸
Ak

Xk + µk, Yk = CXk + νk, (25)

where we define Ak as a discrete-time state matrix, and µk and νk as 4×1 process noise and 3×1 observation
noise assumed to be drawn from a zero mean multivariate normal distribution with covariance Qk and Rk:
µk ∼ N (0, Qk) and νk ∼ N (0, Rk). Equation (25) represents the system model. The update equation for
the state estimate X̂k is then

X̂k+1 = AkX̂k +Kk+1

(
Yk+1 − CkAkX̂k

)
,

with Kk being the optimal Kalman gain as described in [37]. The scheme allows us to iteratively obtain the
estimate of Xk, which includes the inverse altitude, from the measurements of visual observables in Yk.

3.2 Observability
To ensure that the proposed filter can reliably estimate α, the discrete-time system described in equations
(25) must be observable. Herein, we analyze the observability of the respective system by inspecting the
observability Gramian of a simplified scenario.

For a time-varying discrete-time system in the form of equation (25), the k-step observability Gramian
is defined as

Qk = CT0 C0 +AT1 C
T
1 C1A1 + . . .+AT1 . . . A

T
k−1C

T
k−1Ck−1Ak−1 . . . A1. (26)
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The system is observable over k steps if and only if Qk is full rank, i.e., Qk is nonsingular [38]. For the
case of our system described by equation (25), the 2-step observability Gramian is Q2 = CTC +AT1 C

TCA1.
Assuming minimal angular velocity (ωx, ωy, ωz ≈ 0), the determinant of the observability Gramian is

detQ2 = T 2
[
1 + (1 + ϑzT )

2
]2 [

(ax −R31g)
2

+ (ay −R32g)
2

+ (az −R33g)
2
]
. (27)

It can be seen that, for a finite sample time T , the system is observable as long as (ax −R31g)
2
+(ay −R32g)

2
+

(az −R33g)
2
> 0. In fact, each of these terms corresponds to the acceleration of the camera along its body

axis. The summation is the square of the total acceleration. In other words, the system is observable as long
as its net acceleration is not zero. In theory, this means we are unable to get the estimate of α if the camera
is mounted on a robot in a perfect hovering condition. In practice, slight movement is likely adequate to
ensure that the system is observable. This observability condition, however, does not indicate the degree of
observability.

One measure of observability is the square root of the condition number of Qk [39]. This condition
number, κ, indicates how large the change in the initial condition in one direction affects the output in
another direction. The task of finding the state vector from the observed outputs becomes ill-conditioned at
excessively large condition number.

4 Performance Evaluation
In this section, we perform a set of experiments to compare the performance of the direct optic flow method
to the feature-based method outlined in section (2). In addition, the effects of pixelation, fame rate, and
feature size are investigated in terms of two parameters (γd and γf ) introduced in section (2.4).

4.1 Flow calculation and experimental setup
The setup for the following experiment is illustrated in figure 2 (in the handheld experiment configuration).
We use an oCam-5CRO-U camera (Hardkernel) and a single board computer Odroid-XU4 (Hardkernel) for
capturing images, processing, and computing the visual observables. The camera is physically attached to
an AscTec Hummingbird quadrotor (Ascending Technologies). The onboard computer communicates with
the quadrotor via serial communication. This allows us to access the measurements from the IMU on the
robot at the rate of ≈ 150 Hz. Command signals from the ground station for the robot are transmitted to
the single board computer via UDP over wifi at 100 Hz.

We use a Python script for managing the communication between the onboard computer and other
devices (the camera, robot, and ground station). Another Python routine is implemented to process images
for visual observables. For the LK method, the pipeline starts by detecting 50 features in each image using
the FAST corner detectors [40]. The features are matched to the next image with the Lucas–Kanade optical
flow algorithm to directly provide du/dt and dv/dt [34]. The corner detectors and LK algorithms were
implemented in Python using OpenCV wrappers. The visual observables are then calculated from 50 points
using equation (6) and the method of least squares. To eliminate the angular velocity components present
in equation (6), the corresponding measurements from the IMU are used for subtraction.

The direct flow method involves the spatial and time derivative of pixel values, which can be susceptible
to image noises. Therefore, each image is initially smoothened using a 5 × 5 average kernel. The spatial
derivatives, ∂I/∂u and ∂I/∂v, are computed using normalized 3×3 Sobel kernels in their respective directions.
The time derivative is directly obtained by subtracting two consecutive smoothened frames. The visual
observables are computed using the method of least squares based on equation (7), and the angular velocities
are subtracted out by the IMU measurements. To further reduce the computational requirement, only one
in every sixteen pixels (in a grid arrangement) was used in the least squares regression. This amounts to
4, 800 pixels out of the total of 76, 800 pixels for a 320× 240 image. These computations were carried out in
Python.

Moreover, for both methods, we may opt to apply equations (6) or (7) to fully estimate seven unknowns.
Then only the first three elements of b are used for the EKF, discarding other elements. Instead of using
the full models, we may neglect the last four rows of Λi and χij to estimate only the truncated b (which is
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Figure 2: A schematic diagram depicting the setups for three types of experiments. The arena is affixed with
a checkerboard pattern on the ground. The motion capture system provides ground truth measurements for
a robot-camera platform. The single board computer functions differently for different experiments.

a 3 × 1 vector in this case). This approximation is reasonable due to the assumption that the camera axis
is almost vertical (R31, R32 � R33) and the angular velocities are relatively small compared with the visual
velocities. These reduced models potentially decrease the computational load.

The combined camera-computer-robot system was placed in the 3.0 × 3.0 × 2.5 m arena fitted with six
motion capture cameras (OptiTrack Prime 13w). The motion capture system tracks four retroreflective
markers placed on the robot to provide real-time position and orientation feedback for the ground computer.
This information can be processed to obtain the expected visual observables, acceleration, velocities, and
angular velocities of the camera. Thanks to the accuracy (∼ 0.1 mm) and sample rate (240 Hz) of the motion
capture system, we treat these quantities as ground truth measurements for evaluating the performance of
the estimated visual observables or IMU measurements.

4.2 Comparison between LK and direct methods
First, we aim to compare the visual observables calculated from the traditional LK method and the direct
method. We placed a checkerboard pattern with the square size of 5 × 5 cm on the floor. The camera-
robot prototype was commanded to take 320 × 240 images at 30 and 60 frames per second (fps) and store
the images locally. Simultaneously, IMU measurements from the robot were logged. The communication
between the onboard computer and the ground station allows us to synchronize and associate each image
frame with the exact pose of the robot as determined by the motion capture system. The robot and the
camera were handheld manually moved around at the distance ≈ 30 cm to 100 cm from the ground. Several
image sequences were recorded, providing more than 2,500 images for each frame rate. The recorded data
were then post-processed to compute the visual observables using the LK method (equation 6) and the direct
method (equation 7), both with full and reduced models. Since the same sets of images were used for both
methods, we can make a direct comparison of the results.

Figure 3 shows the experimental results of the calculated visual observables from the LK and direct
methods using reduced and full models. The computed visual observables are compared with the ground
truth values calculated from the camera trajectory provided by the motion capture system to obtain RMS
errors for comparison. The results show that at 30 fps, both methods produced visual observables with
similar RMS errors. The difference between full and reduced models are also insignificant. The accuracy of
both approaches improves dramatically (the RMS errors are ≈ 60 − 70% smaller) when the frame rate is
60 fps. The improvement is slightly more pronounced for the LK method. Overall, there is no significant
difference between the direct method and the LK method in terms of RMS errors.
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Figure 3: RMS errors of visual observables from the handheld experiments. (Left) Bar plots contrasting the
RMS errors of the calculated visual observables obtained from the LK method and the direct method at two
camera frame rates (30 fps and 60 fps). (Right) The plots showing 5-second portions of the visual observable
along the camera axis calculated from both methods compared to the ground truth.

The time plot in figure 3 reveals a similar trend in more detail, compared to the ground truth, the
computed ϑz’s are subject to high frequency disturbances. With an increased frame rate from 30 to 60
fps (effectively reducing γx, γy, γz by a factor of two), both methods provide smoother ϑi’s that follow the
ground truth more closely with less oscillations.

Furthermore, we compare the time the Python script used to produce the visual observables by both
methods in full and reduced modes (including only the image processing time, i.e., the without capturing or
image acquiring process). Figure 4 presents the distribution of the time taken per image frame. The data
reveals that the median computational times per frame (solid horizontal lines) are approximately 10 ms,
similar for all configurations. Nevertheless, it can be seen that the reduced direct method consistently used
only 9.3−10.0 ms (25th−75th percentile) per frame, whereas the reduced LK method required 1.7−22.3 ms
(25th − 75th percentile) per frame. The noticeable small deviation in processing time of the direct method
is due to its deterministic nature of the algorithm. In contrast, the speed of feature-based methods needs
more computational time for complex images or when features are lacking. As a result, on average, the LK
methods require slightly more computational time than the direct methods (presented as solid dots in Fig 4).
The time used in image processing task is crucial as it was shown to occupy as much as 85% processing time
in the estimation routine in [21]. The consistency in computation time is desirable for a real-time estimation
process.

4.3 Comparison between different patterns
In the previous performance tests and subsequent experiments, we used a checkerboard pattern to provide
visual texture for optic flow. The advantages of a checkerboard pattern are, for example, the presence of
clear edges and corners and the lengthscale of the pattern can be precisely defined. However, it is possible
that a particular pattern may affect the performance of the direct or LK methods differently.

To verify this hypothesis, we carried out further handheld experiments with identical conditions to the
tests in section 4.2. In this experiments, however, the checkerboard pattern was replaced with two different
patterns: connected rings and leaf as shown in Figure 5. The two new patterns differ from the original
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Figure 4: A box plot presenting the distribution of the times used to process one image frame using the
direct and LK methods with full and reduced models. Each box shows the median, 1st and 3rd quartiles.
The dots represent the mean computational times.
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and LK method to evaluate the effects of texture on the performance of the methods.
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Figure 6: Normalized RMS errors of the visual observable from different pattern sizes and camera frame
rates. (a) The normalized RMS errors of ϑx against the dimensionless parameter γx at four values of γd’s.
The dashed lines show the bounds of errors for γd = 0.08 (green) and γd = 0.25 (black) as theoretically
predicted by equation (15). (b) The RMS errors of ϑx versus the image displacement (in pixel).

checkerboard pattern by the absence of straight edges. The connected ring pattern is also devoid of sharp
corners. Figure 3 shows the results of the calculated visual observables from the LK and direct methods
using the reduced models from images taken at 60 fps. The RMS errors of ϑi’s from the two new patterns
are consistently smaller than that of the checkerboard pattern. However, the improvement is marginal. The
tests here suggest that both methods are reasonably robust to the texture used in indoor environments.

4.4 Characterization of pixelation, speed and feature size on the accuracy of
visual observables

In section 2.4, we examined how the finite pixel size, camera frame rate, and relative motion affect the
estimate of visual velocities under some simplifying assumptions. Three dimensionless quantities: γd, γx and
γz, were found to play a role in the estimates of ϑx and ϑz. To validate our analysis for the case of a camera
having some horizontal speed, we systematically carried out a static experiment with the details as follows.

An identical camera (oCam-5CRO-U) and a single board computer (Odroid XU4) to the previous experi-
ment were statically mounted as shown in figure 2. A checkerboard pattern was affixed on a linear motorized
stage such that the pattern was parallel to the image plane, approximately 50 cm away from the camera.
Here, the checkerboard pattern approximately represents the sinusoidal pattern in the analysis in section
2.4. To elaborate, for a Checkerboard pattern with 5× 5 cm squares, the texture repeats itself every 10 cm.
The corresponding lengthscale L is, therefore, 10 cm (see Figure 5 for an example). The motorized stage
allows the checkerboard pattern to programmatically travel along the camera’s x̂c-axis. The motion of the
pattern relative to the camera essentially provides equivalent effects to a moving camera pointing towards
the fixed ground as previously assumed.

The camera was commanded to record images at 60 fps for 200 seconds. In the meantime, the stage
moved the pattern back and forth at constant speed of approximately 3.8 cm.s−1 as measured by the motion
capture system. This generates a constant ϑx. The experiment was repeated with the checkerboard patterns
of different sizes, including 1 × 1, 2 × 2, 3 × 3, and 5 × 5 cm, to vary the values of γd without altering d.
The stored images were then downsampled to simulate lower camera frame rates down to 1 fps. This results
in different values of γx. We then calculated the visual observable (ϑx) of different cases using the reduced
direct method. With the ground truth value of ϑx from the aid of the motion capture system, we obtained
the RMS errors of ϑx from different conditions. The errors are shown in figure 6a in terms of γx and γd,
along with the theoretically predicted bounds by the formula from section 2.4.1.
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The trend seen in figure 6a generally agrees with the predictions that γx and γd have important roles in
the accuracy of the visual observable estimates. That is, the errors grow as γx increases. For the same value
of γx, γd = 0.25 produces greater errors than γd = 0.12. There, nevertheless, exist two anomalies. First, we
observe relatively large errors in ϑx at small γx (∼ 0.3 or smaller). Second, at very small γd (0.05 and 0.08),
the errors are unexpectedly substantial, exceeding the predicted bounds.

To further understand the cause of the relatively large errors at low γx, we reproduce figure 6a to show
the RMS errors as a function of the image velocity in the unit of pixels per frame (this quantity corresponds
to vxf/wdfp). Apart from those with γd = 0.25, which have relatively large RMS errors owing to the the
large γd, other sets of data suggest that the RMS errors in ϑx are minimized when the motion between image
frames is just below 5 pixels. In other words, the errors grow as the motion drops below 5 pixels per frame.
We speculate that the implementation of the 5× 5 average kernel to smoothen image in the processing step
prevents the detection of minuscule movements between two consecutive image frames, causing the rise in
the RMS errors of ϑx.

Other factors may also contribute to the observed anomalies. For example, we used checkerboard pat-
terns for the experiments to approximate the sinusoidal functions. The implementation of the algorithm to
calculate visual velocities also deviates slightly from the theoretical method as the average filter and Sobel
operators were used to deal with noisy images. The large errors from exceptionally small γd = 0.05 (from a
5× 5 cm pattern) could be a result of relatively sparse data points as the majority of image pixels are black
or white with no spatial or temporal variation.

5 Flight Experiments
To verify that the proposed inverse distance estimation framework can reliably produce the estimate of flight
altitude despite the presence of noise from calculation of optic flow, evaluation of the time derivative of visual
observables, and the use of accelerometer measurements, in this section, we perform flight experiments with
a quadcopter in the indoor flight arena to investigate the performance of the proposed strategy under various
flight conditions.

5.1 Flight tests
To perform flight experiments, we setup the arena and prepare the robot similar to the experiment in section
4.1 as depicted in figure 2. Here, the onboard computer processes the captured images for visual observables
in real-time at 60 fps using the reduced direct flow method implemented on a Python script. The arena
ground was fitted with a 5×5 cm checkerboard pattern. According to the characterization result in figure 6,
we aimed to ensure that γx is less than 0.5 in flight to minimize the errors of computed visual observables.
For a hypothetical horizontal flight speed of 0.5 m·s−1 and a 5× 5 cm checkerboard pattern, γx is expected
to be ≈ 0.5. In contrast, if a 1× 1 cm pattern was chosen, γx would be excessively large at ≈ 2.5.

The image processing routine is identical to the handheld experiment in section 4.1. The single board
computer is also responsible for retrieving IMU measurements and passing on the position feedback for
the robot to ensure that it stays at the commanded position. The IMU measurements and computed
visual observables are transmitted to the ground station via UDP. We found that the visual observable
data consistently lagged behind the IMU measurements by ≈ 84 ms. This number represents the onboard
image processing time, which can be compensated by delaying the IMU measurements by the same amount.
The ground controller executes the estimation algorithm in real-time using the xPC target environment
(MathWorks Matlab) at the rate of 500 Hz. The computation involved with the inverse distance estimation
is relatively inexpensive compared to the calculation of visual observables. We opted to implement this part
of the algorithm on the ground station owing to the ease of implementation and debugging purposes. In
flight conditions, the single board computer generally reports the CPU usage of less than 10% on one of the
eight available cores.

In the implementation of the Kalman estimator, in theory, the covariance matrices associated to the
process noise and the measurement noise (Qk and Rk) can be estimated from the current system state and
empirical data from the IMU. For simplicity, we treated them as constant and they were experimentally
tuned. The gyroscopic readings were used for the angular velocities, the accelerometer outputs were taken
for ax, ay, and az needed for the matrix F in equation (23), and the pitch and roll angles from the IMU
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fusion used for flight attitude stabilization were also used as R31 and R32 for the matrix F . Moreover, a
3rd-order Butterworth low pass filter with a cutoff frequency of 6 Hz was applied to all IMU measurements
and computed visual observables in order to minimize the measurement noise and vibration effects. To
investigate the performance of the proposed estimation schemes, we carried out the flight tests with three
flying patterns: hovering, vertical, and horizontal flights. First, the robot was commanded to hover at 40
cm altitude (γd ≈ 0.04). Second, the robot was instructed to follow a sinusoidal altitude setpoint, centered
at 40 cm with the amplitude of 10 cm, with the period ranging from 5 to 10 seconds (γz < 0.01). Third, we
let the robot fly in a horizontal circular pattern with a radius of 30 cm at the constant altitude of 40 cm.
The periods were set to values between 8 and 20 seconds (γx, γy < 0.25 ).

In total, we conducted 8 hovering flights, 23 vertical flights, and 23 horizontal flights. For each flight,
we extracted the estimation data from the middle portion of the flights, excluding taking off and landing
periods. Each flight provides 30− 45 seconds of valid data for us to examine the results.

5.2 Estimation results
Figure 7 shows the altitude estimation results (from inversion of the estimated α’s) and relevant quantities
from three flights selected to represent different flight modes (hovering, vertical and horizontal). The RMS
errors in α and altitude (d) of these flights are 0.12, 0.08, 0.21 m−1 and 1.91, 1.48, 3.86 cm respectively.
According to the plots, the estimate of α from the horizontal flight is visibly poorer than the others. In fact,
the same trend is observed across several flights.

In terms of visual observables, the hovering flight produced relatively small visual observables in all
directions. The vertical flight resulted in a noticeably greater ϑz, corresponding to the vertical flight speed
of up to ≈ 12 cm·s−1. On the other hand, the horizontal flight reached the maximum speed of ≈ 40 cm·s−1,
rendering ϑx and ϑy to periodically peak at ≈ ±1 s−1. When compared to the ground truth calculated from
the motion capture measurements, however, the exists no significant correlation between the RMS errors of
the visual velocities and their magnitudes. Figure 7 further suggests that, among these flight conditions, the
robot did not deviate considerably from the upright orientation as the pitch and roll angles (R31/R33 and
R32/R33) remained bounded by 0.12 rad, or 7◦.

Figure 9 further illustrates the altitude estimation errors from flights from three flight conditions over
time. The plot verifies that the estimation errors do not tend to grow over time. Nevertheless, some temporal
patterns can be observed in the case of vertical and horizontal flight. The respective oscillations are related
to the periodicity of the commanded flight trajectories. Figure 9 also strengthens the observation of the
significantly larger estimation errors in the case of horizontal flights.

To understand what contributes to the relatively large estimation errors seen in horizontal flights, we
compiled the data from all 54 flights and plot the RMS errors in α and d against the RMS values of various
quantities in figure 8a. Color codes are used to distinguish different flight types. The plots confirm the initial
supposition that the horizontal flights suffered relatively large estimation errors. The majority of hovering
and vertical flights have the RMS errors in d under 3 cm, whereas the horizontal flights resulted in the RMS
errors ranging from ≈ 3−9 cm, depending on the period of the circular trajectory. The averaged RMS errors
in altitude is is 2.51 cm for hovering and vertical flights and 4.54 cm for horizontal flights.

5.3 Analysis of the results
In fact, figure 8a suggests that the magnitudes of ϑx and ϑy might play an important role in the quality of
the inverse altitude estimates. The plots between the RMS errors in α and the RMS of other quantities,
including pitch and roll angles, acceleration, and the condition number, do not show any visible trend. To
quantify the correlation between the RMS errors of the estimate and these parameters, we calculated the
correlation coefficients between the pairs, ρ (·, ·). The magnitudes of the correlation coefficients are presented
in figure 8b, with 0 indicating no correlation and 1 indicating total correlation.

One may expect some relationship between the estimation errors and the pitch/roll angles owing to the
assumption R31, R32 � R33 used in the derivation of the estimation method. In addition, the absence of
acceleration (P̈c) may violate the observability condition according to equation (26). Similarly, the square
root of the condition number, κ1/2, could have a similar role as a large condition number leads to a reduced
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Figure 7: Measurements and estimates from example hovering, vertical, and horizontal flights. (Top) The
plots show the estimated altitude compared to the ground truth from the motion capture system. (Middle)
The visual observables along the camera frame axes calculated by the reduced direct method are compared
with the ground truth. The difference characteristics of different flight modes are evident. (Bottom) The
pitch and roll angles of the robot given by the IMU and the motion capture system. The data suggests that
the attitude of the robot do not deviate significantly from the perfect hovering condition in all three flight
modes.
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Figure 8: Averaged RMS errors of altitude (d̂ − d) and inverse altitude (α̂ − α) from all 54 flights plotted
against the averaged RMS values of other flight parameters. The plots allow qualitative visual inspection
of the correlation between the estimation errors and various quantities. (Bottom) Comparison between the
correlation coefficients of the RMS errors in α and different quantities. The plot reveals a strong correlation
between the altitude errors and the visual observables in the horizontal directions.
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Figure 9: Altitude estimation error over time. The plots show the altitude estimation with respect to the
groundtruth (dashed red) from all flights (solid grey) in three flight modes. The averaged errors are shown
in solid black lines.

observability. However, figure 8b verifies that only ϑx, ϑy and ϑxR31/R33, ϑyR32/R33 have a significant
correlation with the estimation errors, with the coefficients of 0.88 and 0.81.

A possible explanation for the observed phenomena is, for hovering flights or flights with low ground
speeds, the variations in the pitch/roll angles and acceleration are insignificant. It can be seen in figure 8a
that the RMS values of R31/R33, R32/R33 or P̈c of horizontal flights cannot be distinguished from those of
hovering or vertical flights. The same observation applies to the condition number. This means that all
flights are similar in attitude and degree of observability.

The likely explanation why the magnitudes of ϑx and ϑy have considerable effects on the quality of
the estimates could be due to the approximation made to achieve equation (7). Therein, we assumed
ϑz − ϑxR31/R33, ϑz − ϑyR32/R33 ≈ ϑz based on the assumption on attitude: R31, R32 � R33. The former
condition becomes less accurate when ϑx, ϑy > ϑz, which is expected for the case of horizontal flight with
little variation in altitude. A similar approximation was also made to obtain equation (21) from equation
(20). Therefore, for horizontal flights, we anticipate the algorithm to perform better without assuming
ϑz − ϑxR31/R33, ϑz − ϑyR32/R33 ≈ ϑz. This, nonetheless, will inevitably lead to increased complexity in
the estimation routine.

6 Conclusion and Discussion
In this paper, we have tackled the problem of an online altitude estimation for flying robots with a monocular
vision and an IMU using an optic flow-based approach. Compared to the traditional feature-based methods,
we experimentally demonstrated that the performance of the direct method is comparable to that of the
former method both in terms of accuracy and computational speed for providing the visual observables in our
specific test conditions. The quality of the computed visual observables was also shown to depend on various
factors related to the camera and flight configurations. We introduced three dimensionless parameters to
use as guidelines for appropriately determining the camera settings under various flight conditions.

With the proposed EKF scheme, we successfully estimated the flight altitude with the average RMS error
of 2.51 cm considering 31 hovering and vertical flights at ≈ 40 cm altitude. The quality of the estimate was
found to deteriorate upon an increase in the horizontal components of the visual observables. This is likely
owing to the approximations made in the calculation of the visual observables and the estimation scheme.

Our estimation results compare favorably with other prominent works. Among 31 flights with the average
RMS errors of 2.51 cm, our best three flights have the RMS errors of 1.42, 1.43, and 1.48 cm. We believe
one contribution to the relatively small errors we achieved is the computational efficiency of the direct optic
flow approach. This, in turn, enables us to compute the visual observables at 60 fps, significantly improving
the accuracy of the estimation. However, thus far, our work still critically relies on the assumption of flat
ground with no camera occlusion. In contrast, in [22], a random sample consensus (RANSAC) algorithm
was employed to reject outliers in optic flow measurements. The strategy improved the robustness of the
estimation in more realistic, cluttered environments.
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Figure 10: Averaged RMS errors of altitude (d̂− d) and inverse altitude (α̂ − α) from vertical flights at 40
cm and simulated vertical flights from the handheld experiments. The plots show the RMS errors against
other quantities to reflect the effects of vibration on the estimates.

6.1 Effects of vibration on altitude estimation
Unlike applications on mobile robots or controlled experiments [31, 24], in the context of flying robots,
one major challenge in achieving accurate estimates of the inverse distance from the combination of IMU
measurements and the images is owing to the present vibrations in flight. In evidence of this, in [21], it
was reported that the RMS errors in velocity estimates in flight were higher than those from a handheld
experiment, citing the vibrations and motion blur as the cause of inaccuracies. Similarly, in [22], the results
showed that the RMS errors of the estimated velocity from flight are approximately one order of magnitude
larger than the values obtained from simulated data or a handheld experiment.

To further inspect this claim, performed additional handheld experiments to imitate vertical flights in
section 5. In this situation, the robot was manually moved vertically with the amplitude of ∼ 10 cm at the
altitude of ∼ 40 cm, similar to the previous vertical flights. The camera captured series of images, computed
the visual observables and the inverse altitude was estimated using the extended Kalman filter in a similar
fashion. Five simulated flights were recorded. The estimation results and some parameters are presented
with the previous vertical flight data in Figure 10. The figure also verifies that the handheld experiments
were performed at the mean altitude of ∼ 40 cm, comparable to previous vertical flights.

We found that the errors in altitude estimates from the handheld experiments are marginally larger than
those from vertical flights. To explain the results, we found that, when compared to the ground truth, the
quality of computed visual observables (ϑz ) from the handheld experiments did not improve from the vertical
flights (see Figure 10). This suggests that the mechanical vibration did not significantly affect the quality
of the images. On the other hand, the vertical component of the acceleration from the IMU (az − R33g in
equation (23)) from the handheld experiments were found to be more accurate than the ones from flights
when compared to the ground truth. This alone is likely to adversely affect the altitude estimates.

The oscillation from flight, nevertheless, also brings about the more overall acceleration required for the
observability of the inverse altitude as described by equation (27). In evidence of this, we compare the
condition number of observability Gramian (Qk) in the form of log10 κ

1/2 as shown in Figure 10. It can be
seen that condition numbers of handheld flights are consistently and noticeably higher than those from actual
flights, indicating that handheld flights have relatively poor observability. This leads us to believe that the
vibration from flight causes unfavorable effects on the IMU measurements, but simultaneously improve the
observability of the estimation scheme.

While we experimentally found that the flight vibration can be beneficial to the estimates, there are
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Figure 11: Altitude and associated visual observable during landing maneuvers of five representative flights.
The plots show the flight trajectory over two seconds until the robot reached the altitude of 5 cm during
landing. The averaged RMS errors in altitude estimates over this period of the five presented flights are 2.68,
2.18, 2.49, 1.43, and 2.06 cm. The values of ϑz can be seen rising rapidly towards the end of the landing as
a result of the reduced altitude.

several experimental conditions that may affect the final outcomes. For instance, the degree of oscillations
may vary between robots and flight controllers used. Therefore, we believe that our findings here should be
interpreted with care.

6.2 Altitude estimation during landing maneuvers
Using the strategy borrowed from biology, flying robots have demonstrated an ability to achieve smooth
landing by holding constant the time to contact with the surface [15, 41], similar to how honey bees control
their speed by holding constant the rate of optic flow [31]. The technique enables insects and robot to
automatically reduce the speed of flight upon reaching the contact without the knowledge of the actual
distance to the surface.

With the estimate of distance, aerial robots potentially benefit from the ability to deploy a landing gear
at a suitable moment or to approach the surface at arbitrary speed [42, 43]. That is, the landing task is
no longer constrained to a constant rate of optic flow. To illustrate that our proposed strategy can reliably
provide the distance estimate as the robot approaches the ground, we plot the landing trajectories from five
representative flights in figure 11. This shows that the EKF accurately predicts the altitude at various landing
speed with the RMS errors on the order of 2 cm. Upon approaching the surface at approximately constant
speed, the respective visual observable ϑz rises radically and reaches the value of ≈ 4 s−1 in final moments
(significantly higher than 0.3 s−1 observed in flights as shown in figure 7). The values of ϑz calculated from
the direct method were highly accurate until the robot was ≈ 10 cm from the ground, at which point the
field of view is likely too small for features to be captured by the camera.

6.3 Estimation errors at higher flight altitude
In the flight experiments, the robot was commanded to perform various flights near the altitude of 40 cm with
the resultant RMS estimation errors of 2.51 cm. When it comes to landing flight with the flight altitude below
40 cm, we found that the RMS errors were generally below 2.50 cm. Because of the nonlinear dependence of
the visual observables on the flight altitude d (for example, at very large d, v′is converge to zero for the same
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Figure 12: The plots showing the estimation errors of flight inverse altitude and altitudes from vertical flights
performed at various height.

flight speed), it is reasonable to assume that the RMS errors of α or d are dependent on the flight altitude.
The estimation is likely more accurate at lower altitude.

To demonstrate this, we performed ten more hovering flights at higher setpoint altitude ranging from
∼ 70 to 125 cm. The RMS errors in α̂ and d̂ are plotted against the average flight altitude with previous
hovering flight data included in Figure 12. The results suggest that as d0 increases, the RMS errors of α̂
declines, but the estimation error of the flight altitude still increases. When the robot hovers at ∼ 1.2 m,
the altitude estimation error is ∼ 10 cm. This is comparable to the results from in [22], where a robust
feature-based ego-motion estimation algorithm was shown to provide the RMS error of 9.23 cm for a flight
at 1 m altitude. Our results indicate the effectiveness of the proposed implementation of the direct optic
flow method and the EKF scheme that are relatively simple in comparison.

To gain further insights into the relationship between the expected estimation errors from various flight
altitude, we consider the steady-state condition of the Kalman estimation in a simplified situation. Assume
that the robot is only moving vertically. The vertical trajectory oscillates about the nominal altitude d0

with some speed ẑTc Ṗc = v̄z and acceleration az −R33g = āz. If we treat v̄z, āz and d0 to be approximately
constant, the state matrix originally defined in equation (23) becomes

F (t) =


v̄z/d0 0 0 0

0 v̄z/d0 0 0
0 0 v̄z/d0 0
āz 0 0 v̄z/d0

 . (28)

With this constant trajectory assumption, we assume further that the process noise and measurement noise
are independent of d0 and are also constant. In such situation, the extended Kalman filter predicts a
steady-state covariance matrix Σ̄ that can be evaluated from the Ricatti equation [37]

Σ̄ = AΣ̄AT +Q−AΣ̄CT
(
CΣ̄CT +R

)−1
CΣ̄AT , (29)

where A = I + FT according to the discretization previously used in equation (25).
Up to this point, we have argued that, if the robot was following the same trajectory at different altitude,

we anticipate that the only difference would be d0 as the actual velocity and acceleration are independent
of altitude. For the sake of simplicity, we also assume that the vertical velocity and acceleration are also
constant. Doing so allows us to evaluate a steady-state covariance matrix of the state estimation. This
covariance matrix will differ when d0 varies. Hence, it allows us to understand the effect of d0 on the
anticipated altitude estimation error.

Using v̄z = 0.2 ms−1 and āz = 0.2 ms−1 as nominal conditions, we solve the Ricatti equation for Σ̄. The
expected variance of α̂ is given by the first element of Σ̄. If we let α̃2 denotes this value, it is conceivable
that α̃ relates to the RMS error of α̂ from flight experiments. We find that α̃ also reduces as d0 increases as
shown as a dashed line in Figure 12. In terms of the actual flight altitude, the fact that α = d−1 translates
to α̃ ∼ d̃/d2

0. Therefore, we can also predict the uncertainty in d̂ from α̃. This prediction, d̃, is also shown
in Figure 12 as a dashed line. The trend agrees with our experimental results that the estimation error of
flight altitude grows as the altitude increases.
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To further understand the simplified analysis here, it should be mentioned that the role of d0 on the
value of α̃ stems from the diagonal element of F in equation (28). The characteristic of plots in Figure 12(b)
is insensitive to simulation parameters. For instance, if the covariance matrix Q and R are scaled up by a
factor of γ, Equation (29) shows that Σ̄ will be scaled up by the same factor. That is, the shape of lines in
Figure 12 are intact.

It is also important to note that, the trend predicted in Figure 12 is a result of the particular implemen-
tation of the extended Kalman filter we propose. It can be seen that the implementation here differs from
previous works [22, 19]. The proposed scheme can be used whether the visual observables are obtained via
the LK method or the direct method and the estimation errors are likely to depend on the altitude with a
similar characteristic. Other implementation methods will likely result in a different relationship between the
estimation error and altitude from our results in Figure 12. The quality of the altitude estimation depends
not only on the accuracy of the visual observables but also on the estimation method.
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