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ABSTRACT Following the emergence of small flight-capable flapping-wing micro air vehicles, efforts
toward autonomous outdoor operations of these small robots outside controlled laboratory conditions have
been made. For the robots to overcome wind disturbances, it necessitates better insights into the interaction
between the aerodynamics of flapping wings in the presence of winds and the robot’s actuation system.
In this paper, we consider the effects of constant frontal wind on a direct-drive flapping wing robot with
passively rotating hinges and a compliant transmission. A simplified quasi-steady model that encapsulates
the effects of frontal wind on aerodynamic forces is proposed. The model facilitates the calculation of
periodic aerodynamic forces from nominal flapping kinematics. When combined with the dynamics of
the actuation system, we are able to predict the lift force generated by the robot from the driving signals,
without direct measurements of the flapping kinematics or the angle of attack. The proposed framework was
experimentally verified on a flapping-wing robot prototype with a single wingspan of 76 mm. The results
reveal up to 40% increases in lift when the robot was subject to 2.5 m/s horizontal winds. An analysis of
the frequency response of the system is also provided to explain the resonance principles of the robot in the
presence of frontal winds.

INDEX TERMS Flapping-wing robot, frontal wind, passive hinges, quasi-steady aerodynamics.

I. INTRODUCTION
Intriguing aerial agility of flies and other insects alike has
long attracted interests from scientists and engineers. Rely-
ing on the reciprocating wing motion, these small flying
creatures are capable of complex maneuvers unmatched
by any man-made machines. To date, substantial achieve-
ments in the understanding of aerodynamics, biomechanics,
and flapping flight of insects and hummingbirds have been
made [1]–[3]. Together with the technological advancement
in robotics [4], a number of flight-capable flapping-wing
robots have been developed, ranging from sub-gram piezo-
electric actuator driven microrobots [5], [6], centimeter-scale
prototypes [7]–[11], to a bird-sized robot with deformable
wings [12].

Despite having demonstrated liftoffs or short stable flights,
operations of small flapping-wing robots are still predomi-
nantly limited to controlled or indoor environments. In order

for insect-scale flapping-wing robots to robustly perform
real-world applications, e.g. search and rescue or assisted
pollination, they must overcome the effects of external dis-
turbances such as wind gusts. This necessitates better under-
standing of complex interactions between aerodynamics at
small Reynolds number (Re ∼ 104), the mechanics of flap-
ping wings, flight stability, and the dynamics of the robot’s
actuation system.

In terms of aerodynamics, several studies investigate how
gusts affect the performance of flapping flight [13], [14].
Computational methods [15]–[17], as well as particle image
velocimetry (PIV) analysis [17]–[19] are often used to iden-
tify and explain the unsteady aerodynamic effects, including
wing-wake interactions, delayed stall, and stabilized leading
edge vortex (LEV). The flow visualization provides a con-
vincing explanation into how the lift generation is altered
compared to a regular hovering flight. For instance, at low
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advance ratio (J), it was found that LEVs grewmore conically,
resulting a slight increase in flight forces [19], while the
study of free forward flight of cicadas suggests that lift is
predominantly generated during the downward stroke [15].

As an alternative or augmentation to numerically solving
the Navier–Stokes equations, several researchers employ
dynamically-scaled robotic flappers to replicate flapping-
wing insects to examine the relationship between the
wing kinematics and aerodynamic forces in forward
flight [18]–[22]. In [20], a translating and revolving platform
was used to measure lift and drag forces for a wing at fixed
angle of attacks. In more recent works, the combination of
translation and flapping motion is realized [19], [21], [22].
In these studies, variations of quasi-steady models are pro-
posed from empirical data to describe the aerodynamic forces
with respect to the flapping kinematics, angle of attack,
and the advance ratio. Experimentally, quasi-steady mod-
els have been verified sufficiently accurate to describe the
observed forces in spite of neglecting the unsteady flow
components [22]. Compared to themore comprehensive com-
putational approach, the quasi-steady method offers more
tractable solutions suitable for applications in robotics that
require further considerations related to actuation dynamics
and flight stability.

In flight, forward or lateral motion alters the baseline aero-
dynamic forces from the hovering condition. The change in
lift and drag directly affect the rotational and translational
dynamics of a flapping-wing robot. This influences the longi-
tudinal and lateral stability of flapping flight as demonstrated
in [11], [15], [19], [21], [23], and [24]. For robotic systems,
it is crucial for a flight controller to take into account the
additional aerodynamic effects to robustly perform dynamic
maneuvers or stabilize in the presence of external gusts.
While some control techniques, such as adaptive algorithms,
have shown promise [6], capable of stabilizing the insect-
scale robot in gusty environments with minimal prior knowl-
edge, it is still advantageous to gain better understanding
on the effects of wind disturbance on flapping flight. More
accurate models would expand the flight envelope, enhancing
the robustness of the flight controller.

The wing kinematics of actual flapping-wing robots, how-
ever, are largely impacted by the actuation dynamics of the
robot and the disturbances. Small flapping-wing vehicles do
not usually incorporate sensors to precisely control the wing
kinematics owing to power and weight constraints. Under-
going flapping motion, as the wing encounters additional air-
flow, the change in instantaneous aerodynamic forces directly
affects the force or torque of the actuator. This, in turn,
alters the flapping kinematics. In order to correctly predict
the aerodynamic effects, as a consequence, it is essential to
take into consideration the complete actuation dynamics of
the flapping-wing system [9], [25].

In this paper, we aim to investigate the influence of frontal
wind on aerodynamic forces experienced by a flapping-wing
robot, and to ultimately evaluate the lift generation. The
proposed integrated framework takes into account how the

wing kinematics react to the presence of the wind under
the given actuation dynamics. More specifically, we study
a flapping-wing system with a compliant transmission—the
bio-inspired mechanism that enables efficient reciprocat-
ing flapping motion [26], and passively rotating wing
hinges [27], [28] upon encountering constant frontal gusts.

Flapping-wing robots that utilize elastic components in
the transmission are able to store and release mechanical
power during each flapping cycle, mimicking the function of
insect thoraxes. This renders more efficient operations and
minimizes the peak torque required by the actuator. Despite
some degree of nonlinearity, the overall actuation systems
are capable of resonance [7], [9], [25]. Frictional losses and
aerodynamic drags contribute to the dissipation of energy,
which determines the flapping amplitude and lift generated
by the system.

To evaluate the lift generated by a robot directly from the
the driving input and system specifications, therefore, one
must determine a steady-state periodic flapping kinematics,
of which the resultant aerodynamic forces satisfy the equation
describing the dynamics of the actuation system. To achieve
this, we modify the quasi-steady models based on previous
empirical observations to reduce the model complexity, lead-
ing to a more tractable framework. Motivated by the previous
work [29] and our preliminary result [30], we assume that the
instantaneous wing rotation angle can be determined solely
from the instantaneous aerodynamic forces on the wing,
neglecting the inertial effect. This allows us to determine the
angle of attack of the wing from the flapping amplitude and
the wind speed, resulting in the simplified quasi-steadymodel
that is independent of the angle of attack.With the assumption
of a sinusoidal flappingmotion, approximate, explicit expres-
sions of sinusoidal aerodynamic drag and stroke-averaged lift
can be obtained. With the expression of the periodic drag in
terms of the flapping amplitude, it is then straightforward to
solve the system dynamics equation for the flapping ampli-
tude corresponding to a given driving signal. In short, we are
able to predict the flapping amplitude and lift generated by
the robot, relying only on the driving signal, the frontal
wind speed, and the knowledge of crucial system parameters.
Compared to traditional methods that requires solving the
coupled aerodynamic and mechanical systemmodels or mea-
surements of the wing rotation angle [27], [28], the pro-
posed method offers a simple alternative for robot designers
while providing insights into the interaction between the
actuation dynamics and aerodynamics. With some simpli-
fying assumptions, our contribution is a simple model with
reasonable accuracy for at-scale flapping experiments. That
is, the accuracy of the model is sufficient to describe the
experimental results from centimeter or millimeter scale flap-
ping robots that are subject to imperfect fabrication and other
unaccounted disturbances. Our approach, therefore, cannot
be compared with computational methods that offer more
rigorous results at the expense of computational cost.

In the next section, we begin with the description of the
flapping kinematics, followed by a nonlinear second order
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FIGURE 1. Illustration of the Coordinate systems and the flapping kinematics. The flapping angle (φ) describes the rotation of the wing about the
Z0 axis. The wing rotation (ψ) presents the rotation of the hinge in the direction along the wing’s leading edge. The wind is assumed to travel along the
−Y axis with the speed vw . (A) and (B) shows the top and side views of the wing in flapping motion. (C) illustrates the wing state in the middle of the
forward stroke. (D) highlights the wing rotation during forward and backward strokes.

model of a flapping-wing system capable of resonance. The
model outlines the connection between the wing kinematics
to the aerodynamic drag and the system input. In section
III, a simplified quasi-steady model is proposed. This model
eliminates the dependency on the angle of attack from tra-
ditional definitions of lift and drag coefficients. Eventually,
this allows us to express the aerodynamic drag in the system
equation in terms of the flapping amplitude and the frontal
wind speed only. Section IV consolidates the results from the
two section and offers additional analysis on the resonance
properties of the flapping-wing system when the robot with
flexural wing hinges is subject to frontal wind. Then, bench-
top experiments were performed on a centimeter-scale single-
wing flapper with a custom wind generator to verify the
proposed framework, including the simplified quasi-steady
model and the system model. The tests were carried out on a
DC motor-driven robot half with a wing semi-span of 7.6 cm
with the flapping conditions corresponding to Re∼ 4×104 at
different advance ratios from 0 to∼ 0.33. The results are ana-
lyzed. The conclusion and further discussion on the proposed
method and existing methods are provided in section VII.

II. DESCRIPTIONS OF DIRECT-DRIVE
FLAPPING-WING SYSTEMS
A. FLAPPING KINEMATICS
To describe the wing kinematics, we define the inertial ref-
erence frame X0Y0Z0 and the wing-attached frame XYZ as
shown in figure 1. The Z axis of the wing-attached frame
coincides with the Z0 axis, and the leading edge of the wing
is parallel to the X axis. The flapping motion, with no stroke
plane deviation, is described by the stroke angle φ that rep-
resents the rotation from X0 and X about the Z0 axis. During
the flapping motion, the aerodynamic forces induce a passive
rotation about the wing hinge [28], [31], causing the angle of

attack (α) to deviate from its nominal angle of 90◦. We define
the wing pitch rotation angle (ψ) as the rotation of the wing
about the X axis such that ψ = π

2 − α. For a sinusoidal
flapping motion with an angular frequency ω = 2π f , the
stroke angle is described by

φ (t) = φ1 + φ0 sinωt, (1)

where φ1 is the mid-stroke position and φ0 is the flapping
amplitude. Without loss of generality, we assume a constant
wind disturbance of speed vw in the −Y0 direction. The wind
speed in the projected direction perpendicular to the leading
edge of the wing (v⊥) is, therefore, v⊥ = vw cosφ. In this
work, we limit the scope to the case of frontal winds. That is,
the wind direction is perpendicular to the mid-stroke position,
or φ1 = 0.

B. FLAPPING-WING ACTUATION SYSTEMS WITH
RESONANCE
Dipteran insects achieve high wingbeat frequencies in excess
of the limit of pure neural activation of flight muscles with
the help of the resonance oscillations of the thorax [32].
Similarly, several flapping-wing robots incorporate compli-
ant transmission to replicate the resonance observed in insects
to produce efficient reciprocating wing motion. The com-
pliant mechanisms generally contain an elastic component
that has an ability to store and release energy during the
flapping cycle [26]. In such cases, the wing stroke dynamics
are captured by a second-order lumped model in the form:

Jmφ̈ + B1φ̇ + Ksφ + τaero = Kuu, (2)

where Jm is the moment of inertia, B1 is an effective linear
damping coefficient, Ks is the parameter for the linear tor-
sional stiffness, u is the dimensionless input signal, Ku is the
input gain, and τaero is the aerodynamic damping torque on
the wing as it flaps, approximately proportional to

∣∣φ̇∣∣ φ̇.
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Models similar to equation (2) have been employed to
describe the dynamics of a millimeter-scale microrobot
driven by a piezoelectric actuator [25], and motor-driven
centimeter-scale robots [9], [33]. The inertia term includes
the wing inertia as well as other moving parts such as the
actuator and transmission. The linear damping is due to the
frictional losses in the mechanism and actuation. The stiff-
ness parameter is primarily contributed by the piezoelectric
cantilever beam for the robot in [25], or by the addition of
a torsional spring for the robots in [9], [33] and our robot.
Readers are referred to respective references for comprehen-
sive descriptions of Jm, B1, and Ks.

According to previous research and our observation, when
driven by sinusoidal voltage inputs, flapping-wing systems
often exhibit highly sinusoidal flapping trajectories of the
same frequency: φ (t) = φ0 sinωt . This is because, apart
from the aeodynamic torque (τaero), the system in equa-
tion 2 is linear. When driven by a sinusoidal input, the resul-
tant flapping angle is sinusoidal. The aerodynamic torque
term can be regarded as a combination of many sinusoidal
components with the dominant term corresponding to the
driving frequency and other higher harmonic components.
As a second-order system, higher harmonic components are
largely attenuated, resulting in a highly sinusoidal flapping
stroke. In other words, from the system point of view, only
the primary sinusoidal component of τaero directly affects
the flapping amplitude. For this reason, several studies have
employed the approximation that the aerodynamic damp-
ing torque is proportional to φ̇ by some function f (·) as
τaero ≈ f

(
φ, φ̇

)
φ̇ to facilitate the analysis. For instance,

Finio et al. opted to linearized the drag using f (·) ∝ φ0 to
always overestimate the actual drag [25], in [7], f (·) was
chosen as f (·) = 3

8πωφ0 to match the stroke-averaged
power. While such approaches simplify the system analysis,
the system described by equation (2) remains nonlinear. In the
following sections, we show that, with a balanced torque
assumption [29], [30], how a quasi-steady model can be
modified to provide an approximate, analytic expression of
f (·) as f (φ0, ω, vw), which includes the scenario where there
exists an influence from frontal gusts (vw) on a flapping wing.
Moreover, the derived model also predicts the lift generated
by the flapping wing in the presence of frontal winds.

III. QUASI-STEADY AERODYNAMICS AND
FLAPPING-WING SYSTEMS WITH PASSIVE HINGES
A. QUASI-STEADY AERODYNAMICS
For a flat wing with the morphology schematically described
in figure 2 in a flapping motion, the blade-element method
provides a convenient way to compute aerodynamic forces
by considering the force component at each chordwise strip
along a flapping wing. We let r be the distance along the
X axis from the origin of the wing-attached frame, and
c(r) describe the chord length at position r . In the flapping
motion, the wing undergoes a rotation prescribed by φ (t) =
φ0 sinωt . Assuming only the normal component of the

FIGURE 2. Wing morphology parameters: R is the single wingspan, O is
wing root and the origin of the wing-attached frame, r is the distance
along the X-axis from O, and c(r ) denotes the chord length at position r .
The flapping angle and the wing rotation are described by φ and ψ .

airspeed contributes to aerodynamic forces [34], the instan-
taneous lift and drag forces produced by the whole wing in
the presence of the gust vw is computed from the sum of all
elements according to the quasi-steady model:

FL,D(ψ, φ̇, v⊥) =
1
2
ρCL,D(ψ)

·

∫ R

r=0

∫ c(r)

c′=0

(
φ̇r + v⊥

)2 dc′dr, (3)

where ρ is the air density, v⊥ = vw cosφ, is the component
of the wind perpendicular to the leading edge of the wing,
and CL,D is the lift/drag coefficient, which can be written as
functions of the wing’s rotation angle [35]:

CL(ψ) = CL0 sin (2ψ) (4)

CD(ψ) = CD0 + CD1 cos (2ψ). (5)

The numerical coefficients (CL0 = 1.8,CD0 = 1.9,
CD1 = 1.5) were empirically determined and used for
other flapping wings at similar scales [29], [35], [36]. The
expression of lift and drag can be further expanded using
the definition of a dimensionless radius ith moment of area
r̂ ii =

∫ R
0 c (r) r idr/ARi [37] as

FL,D =
1
2
ρCL,D(ψ)A

(
φ̇2R2r̂22 + 2φ̇Rr̂1v⊥ + v2⊥

)
. (6)

Similar to other models for robotics applications [9], [29],
[38], other aerodynamic forces such as rotational forces and
added mass effects are neglected in this work as they provide
secondary effects. In addtion, the stroke-averaged values of
those terms are typically close to zero (further details pro-
vided in the supplementary materials).

B. PASSIVE WING PITCH ROTATION AND
EQUILIBRIUM ASSUMPTION
For flapping-wing robots with flexural hinges and thin wings
as found in [6], [8], and [29] and our robot, the dynamics of
the wing pitch rotation, in the absence of out-of-planemotion,
simplifies to [27]

Ixxψ̈ = τh + τr + Ixyφ̈ cosψ +
1
2
Ixx φ̇2 sin 2ψ, (7)
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where Iij’s are the elements in the wing’s inertia tensor com-
puted about the wing’s attached frame in figure 1, and τh
and τr are the moments caused by the elastic hinge and
aerodynamic forces respectively. The third term on the right
hand side of the equation above is the inertial component
contributed by the fact that the rotational axis does not align
with the centre of mass of the wing. Gravish and Wood [29]
proposed to simplify equation (7) further by neglecting the
inertial terms, resulting in the balanced torque condition:
τh + τr = 0. This assumption is justified for the calculation
of aerodynamic forces, as φ̈, ψ̈ → 0 in the mid-stroke, where
aerodynamic forces peak.

The restoring torque generated by the hinge rotation is
approximately proportional to the rotational stiffness of the
hinge (kh) such that τh = −khψ , whereas the total aero-
dynamic torque about the X axis (τr ) can be calculated as
the sum of lift and drag elements acting normal to the wing
according to figure 1 and equation (3),

τh =
1
2
ρ (CL sinψ + CD cosψ)

·

R∫
r=0

∫ c(r)

c′=0
c′
(
φ̇r + v⊥

)2 dc′dr . (8)

By defining

F = FL sinψ + FD cosψ, (9)

and the chordwise center of pressure

cca =

∫ R
r=0

∫ c(r)
c′=0 c

′
(
φ̇r + v⊥

)2 dc′dr∫ R
r=0

∫ c(r)
c′=0

(
φ̇r + v⊥

)2 dc′dr , (10)

we get τh = ccpF and the assumption of balanced torque
becomes khψ = Fcca. Note that this chordwise center of pres-
sure—the location where the aeodnyamic forces act on the
wing—deviates from the conventional definition that refers to
the spanwise center of pressure [38]. In the absence of frontal
winds, ccp is constant for a particular wing morphology,
regardless of the flapping kinematics:

ccp
∣∣
v⊥=0
=

∫ R
r=0

∫ c(r)
c′=0 c

′r2dc′dr∫ R
r=0

∫ c(r)
c′=0 r

2dc′dr
, (11)

otherwise, ccp varies with φ̇, complicating the analysis. Nev-
ertheless, we can bound the value of ccp by considering the
scenario where φ̇→ 0 as

ccp
∣∣
φ̇=0 =

∫ R
r=0

∫ c(r)
c′=0 c

′dc′dr

A
. (12)

For the sake of simplicity, it is reasonable to assume a con-
stant ccp that lies between the bounds from equations (11)
and (12). Then, according to equation (6), the assumption of
balanced torque becomes

1
2kh

ρAccp
(
φ̇2R2r̂22 + 2φ̇Rr̂1v⊥ + v2⊥

)
=

ψ

sin(ψ)CL(ψ)+ cos(ψ)CD(ψ)
. (13)

It can be seen that equation (13) separates the terms with
the wing rotation angle ψ to the right hand side, whereas
the left hand side is a dimensionless quantity related to the
perceived airspeed. This implies we can determine the wing
pitch angle from the current airspeed of the wing only. In the
absence of the frontal gust, this reduces to a simpler form we
previously presented in [30]. From here, we let x represent the
quantity on the left hand side of the equation (13), which will
be referred to as the normalized squared airspeed. It follows
that equation (13) can be numerically solved for ψ as ψ =
f −1 (x). The use of the dimensionless quantity x enables us
to generalize the framework presented below to a broad range
of flapping-wing robots with passively rotating hinges.

C. APPROXIMATE WING ROTATION ANGLE AND INSTANT
AERODYNAMIC FORCES
While it is possible to numerically calculate ψ from x from
equation (13), it is desirable to obtain an explicit solution to
facilitate further analysis. Previously, we demonstrated that
a simple 2nd-order polynomial fit, ψ̂ = a1x + a2x2 with
a1 = 3.54 and a2 = −3.04, provides a highly accurate
estimate ofψ with respect to the direct solution from equation
(13) for ψ < π/3, resulting in the maximum error |ψ − ψ̂ |
of 0.02 rad [30]. The comparison is illustrated in figure 3(a).
The upper limit of ψ = π/3, corresponding to x = 0.54,
is suitable for flapping-wing robots designed to avoid over-
rotation, which may cause a significant reduction in lift.

Major considerations for a flapping-wing robot, neverthe-
less, are not the wing rotation angle, but the aerodynamic
forces, or lift and drag. Using the definition of normalized
squared airspeed (x) and the fact that ψ is a function of x
under the assumption of balanced torque, we re-write equa-
tion (6) as

FL,D =
kh
ccp

xCL,D (x) , (14)

which motivates us to directly approximate CL,D as polyno-
mial functions of x. More specifically, we define

ĈL = CL0
(
α1x + α2x2 + α3x3

)
, and

ĈD = CD0 + CD1
(
β0 + β1x + β2x2

)
, (15)

where αi’s and βi’s are numerical coefficients, listed in
table (1). Figure 3(b) compares the estimated lift and drag
coefficients with the ones calculated from equation (4) as a
function of x. The result reveals that three coefficients are
sufficient to approximate CL,D. Moreover, this allows us to
directly estimate the aerodynamic forces as

F̂L,D (x) =
kh
ccp

xĈL,D (x). (16)

As demonstrated in figure 3(c), the estimated aerodynamic
forces only slightly deviate from the numerical model. The
maximum discrepancy of less than 5% is only seen at large
airspeed (x = 0.7).
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FIGURE 3. Model predictions of the wing rotation angle, lift and drag
coefficients, and lift and drag forces with respect to the normalized
square airspeed. (a) The wing rotation angle calculated directly from the
numerical model (solid line) from equation (13) and from the polynomial
approximation (dashed line): ψ̂ = a1x + a2x2. The circular marker
indicates the optimal rotation angle ψ = 45◦ when x = 0.30. (b) The lift
and drag coefficients obtained from the numerical models (solid lines)
and the proposed polynomial functions (dashed lines). (c) The
corresponding normalized lift and drag forces based on the coefficients
in (b).

D. LIFT AND DRAG WITH PERIODIC FLAPPING
KINEMATICS
In the development of a flapping-wing robot, we are inter-
ested in the stroke-averaged lift generated when the robot is
driven by a sinusoidal input such that the flapping angle is
approximately described by φ = φ0 sinωt . In the meantime,
it is important to take into consideration the drag force, par-
ticularly, the primary component of the drag corresponding to
the flapping frequency as it plays a critical role in determining
the flapping amplitude as captured by dynamics of the system
according to equation (2).

TABLE 1. Aerodynamic coefficients.

In order to take into account the periodicity of the aero-
dynamic forces while retaining the tractability of the model,
we propose to make two simplifying approximations on x
from equation (13). First, we seek to eliminate the time-
dependence of v⊥ = vw cosφ = vw cos (φ0 sinωt). This
is achieved by approximating v⊥ using its stroke-averaged
value

v⊥ ≈
1
T

∫ t=T

t=0
vw cos (φ0 sinωt) = vwJ0 (φ0) ,

= v̄⊥ (17)

where J0 (·) is the zero-order Bessel function of the first
kind. The value of v̄⊥ depends not only on vw, but also
φ0. In fact, for the range of realistic flapping amplitude (for
example, φ0 < 3π/4), J0 (φ0) is a decreasing function. The
expression implies that the effect of the frontal wind becomes
less important at larger stroke amplitude. This is owing to the
wing spending proportionally shorter time in the orientation
perpendicular to the wind direction.

Next, we employ a single dimensionless number, r̂ , to esti-
mate r̂1 and r̂2 such that r̂ ≈ r̂1, r̂2. Both simplifications lead
to

x ≈
1
2kh

ρAccp
(
φ̇Rr̂ + v̄⊥

)2
. (18)

For simplicity, we define vφ = ωφ0Rr̂ to denote the maxi-
mum flapping speed. It follows that, for a sinusoidal flapping
kinematics, φ = φ0 sinωt , it is straightforward to analytically
evaluate stroke-averaged values (denoted by 〈·〉) of x i. For
instance,

〈x〉 =
1
2kh

ρAccp

(
1
2
v2φ + v̄

2
⊥

)
,〈

x2
〉
=

(
1
2kh

ρAccp

)2 (3
8
v2φ + 3v2φ v̄

2
⊥
+ v̄4
⊥

)
, (19)

and so on. The time-averaged lift is, therefore, derived from
equations (15) and (16) as〈

F̂L
〉
=

kh
ccp

CL0
(
α1

〈
x2
〉
+ α2

〈
x3
〉
+ α3

〈
x4
〉)
. (20)

The drag force has a first-order effect on the aerodynamic
torque (τaero), which directly influences the flapping ampli-
tude of the robot as outlined by the system model in equa-
tion (2). Since only the first harmonic component of the
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torque directly affects the flapping amplitude, we are only
interested in this primary component. This does not, in any
way, mean that the aerodynamic drag is approximately sinu-
soidal.

To begin, we take into account the direction of the force
during the flapping period. In other words, we express F̂D as

F̂D = −
kh
ccp

(
φ̇Rr̂ + v̄⊥

) ∣∣φ̇Rr̂ + v̄⊥∣∣ ĈD (x). (21)

Next, we aim to employ the Fourier series approximation
to compute the magnitude of the first harmonic component
of F̂D from 2

T

∫ t=T
t=0 F̂D cosωtdt . To workaround the pres-

ence of the absolute term in equation (21), we use the fact
that, at relatively small vw, the sign of the

(
φ̇Rr̂ + v̄⊥

)
term

mostly coincides with the sign of cosωt . The exception only
occurs when

(
φ̇Rr̂ + v̄⊥

)
≈ 0, which is unimportant as the

corresponding aerodynamic drag also approaches zero. This
motivates us to move the absolute sign to the cosωt term to
yield the following:

r
F̂D

z
≈ −

2
T

∫ t=T

t=0

kh
ccp

·

[
CD0x + CD1

(
β0x + β1x2 + β2x3

)]
|cosωt| dt

= −
kh
ccp

[
CD0 JxK+ CD1

·

(
β0 JxK+ β1

r
x2

z
+ β2

r
x3

z)]
, (22)

where we have introduced the notation J·K = − 2
T

∫ t=T
t=0 ·

|cosωt| dt to represent the approximate amplitude of the first
harmonic component. The proposed method enables us to
estimate F̂D as

r
F̂D

z
cosωt using the analytical expression

of
q
x i

y
, of which some examples are provided as follows

JxK =
1
2kh

ρAccp

(
8
3π

v2φ +
4
π
v̄2
⊥

)
,

r
x2

z
=

(
1
2kh

ρAccp

)2 ( 32
15π

v4φ+
16
π
v2φ v̄

2
⊥
+

4
π
v̄4
⊥

)
. (23)

The numerical predictions of lift and drag forces are illus-
trated in figure 4. Overall, the numerical models (〈FL〉, JFDK,
points) and polynomial models (

〈
F̂L
〉
,

r
F̂D

z
, solid lines)

provide good agreements. Figure 4(a) and (c) show how the
stroke-averaged lift varies when vφ and and v̄⊥ change. The
lift enhancement can be as large as 40% for modest values
of v̄⊥. The numerical models suggest that the contribution
from v⊥ only significantly affects the lift at intermediate
values of vφ . This is likely because the wind becomes rel-
atively unimportant at larger flapping amplitude and faster
wing speed.

The predictions of the drag amplitude reveal an interesting
phenomenon. As seen from figure 4(b), at small vφ , the intro-
duction of frontal wind increases the aerodynamic drag. How-
ever, the trend reverses when 1

2kh
ρAccpv2φ > 1.8. Above this

threshold, the flapping wing experiences an increase in lift

and a reduction in drag—a highly desirable condition for the
robot.

To sum up, in this section, we have proposed to neglect the
inertial terms in the consideration of wing pitch dynamics.
This balanced torque assumption allows us to exploit poly-
nomial functions to analytically approximate instantaneous
lift and drag forces experienced by a flapping wing in the
presence of constant frontal wind. The aerodynamic forces
can be further examined to obtain an expression of the stroke-
averaged lift and the first-order sinusoidal approximation of
the drag. All these quantities can be computed directly in a
single step without directly solving the equations of motion
for steady-state solutions as traditionally required.

IV. DIRECT-DRIVE FLAPPING-WING SYSTEMS WITH
QUASI-STEADY AERODYNAMIC MODELS
A. COMPLETE SYSTEM MODEL
The estimated aerodynamic drag can be incorporated into the
system model described by equation (2). To achieve that, we
assume that the aerodynamic torque seen by the motor is
proportional to the total drag acting on the wing, τaero =
rcpFD, with rcp representing the spanwise location of the
center of pressure [38]. The dynamics of the robot actuation
becomes

Jmφ̈ + B1φ̇ + Ksφ + rcpFD = Kuu. (24)

For a sinusoidal input u = u0 sin (ωt + θ) (for some
θ , depending on the phase response of the system) with
the corresponding sinusoidal wing trajectory prescribed by
φ (t) = φ0 sinωt as assumed previously, the derivation in
Section III-D suggests that FD ≈

r
F̂D

z
cosωt . After substi-

tuting φ (t) and FD into equation (24), we obtain the steady-
state response of the system:(
Ks − Jω2

)2
φ20 +

(
B1ωφ0 + rcp

r
F̂D

z)2
= K 2

u u
2
0. (25)

With the knowledge of the physical parameters of the robot,
solving the equation above directly allows us to compute
the flapping amplitude, φ0, using only the input amplitude,
the driving frequency, and the frontal wind speed in a single
step. Once the flapping amplitude is determined, the lift force
can be predicted using equation (20). In other words, with a
few simple analytical expressions, we can predict the flapping
amplitude and lift generated by a flapping-wing robot with
frontal gusts directly from the driving input.

B. RESONANCE ANALYSIS
Despite the inherently nonlinear dynamics of flapping-wing
robots, several direct-drive robots exhibit the system reso-
nance, demonstrating peak flapping amplitudes or maximum
lifts when driven at particular frequencies [5], [7], [9], [33].
Previously, it has been theoretically shown and experimen-
tally verified that, for a flapping-wing robot with freely rotat-
ing hinges and wing stoppers, there exists a peak frequency
where the flapping amplitude is largest, and a slightly higher
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FIGURE 4. Model predictions of stroke-averaged lift and the major harmonic of the drag for a flapping wing under various
flapping kinematics and wind speed conditions. The dots represent the results from the numerical model, whereas the
lines are from the polynomial approximations. (a) The stroke-averaged lift plotted against 1

2kh
ρAccpv2

φ
, shown for

different frontal wind conditions. (b) The amplitude of drag plotted against 1
2kh

ρAccpv2
φ

under various frontal wind

conditions. (c) The stroke-averaged lift plotted against 1
2kh

ρAccpv̄2
⊥

, at different wing kinematics. (d) The amplitude of drag

plotted against 1
2kh

ρAccpv̄2
⊥

under various flapping kinematics.

natural frequency that the robot achieves the maximum flap-
ping velocity and lift [9]. Herein, we show that, through our
lift and drag approximations from Section III, to the first
order, a direct drive system with flexural wing hinges under
the influence of constant frontal wind also possesses a natural
frequency. At this natural frequency, the flapping velocity
is maximized, nevertheless, lift is only largest at the natural
frequency when the frontal wind is absent.

To begin, we let ω0 denote the natural frequency, which is
defined as the flapping frequency that maximizes the flap-
ping speed (vφ). To determine ω0, we write equation (25)
in terms of vφ and differentiate it with respect to ω. The
term d

r
F̂D

z
/dω can be computed using the chain rule as

(
d

r
F̂D

z
/dvφ

)
·
(
dvφ/dω

)
. Atω0, dvφ/dω = 0 andwe obtain

the solution ω0 =
√
Ks/Jm, regardless whether there exists a

frontal wind. At this natural frequency, the flapping speed is
highest, similar to a flapping-wing systemwith freely rotating
hinges and wing stoppers [9].

From this point, to evaluate the frequency that provides
the maximum lift, we examine the approximate expres-
sion of stroke-averaged lift in equation (20) and the plot
of lift in figure 4(a). In the absence of the frontal wind
(v̄⊥ = 0), lift is a monotonously increasing function of the
flapping speed (vφ). As a consequence, the condition for the
maximum lift production coincides with that of the highest
flapping speed. In other words, the model predicts lift to
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FIGURE 5. The experimental setup. The robot is mounted on the force sensor next to the wind generator (not shown). The
camera captures the flapping motion for tracking the flapping amplitude.

be maximized at the natural frequency in the absence of
winds.

When v̄⊥ 6= 0, lift is no longer guaranteed a monotonous
increasing function of vφ as v̄⊥ is not independent of φ0.
With the analytical expression of

〈
F̂L
〉
, it is still feasible to

evaluate the equation that enables us to determine the flapping
frequency that maximizes the lift when the frontal wind is
present. Nevertheless, the expression becomes sophisticated
and the solution becomes a function of the wind speed vw
and the input amplitude. It is more reasonable to resort to
numerical solutions for the task. Similarly, it is also possible
to find the peak frequency, where the flapping amplitude is
maximized, using the same method. However, we omit the
detail due to the lack of a simple analytical solution.

V. FLAPPING EXPERIMENTS
A. FLAPPING-WING ROBOT
To verify the proposed framework, flapping experiments were
conducted on a centimeter scale single-wing flapper. The
robot consists of a motor, a torsional spring, a hinge, and
a wing. The spring confines the rotational movement of the
wing to the mechanical ground, acting as an elastic element
to create the resonance similar to the system described in [9].
The motor (BO-P1B, Vigor Precision) with the stall torque
of 1.765 N·mm was selected as an actuator. In addition to the
rotation of the motor shaft that induces the flapping angle (φ),
the wing also rotates passively along its leading-edge by the
angle (ψ) thanks to the flexural wing hinge.

The wing frame is made of carbon fiber spars and adhered
to a thin polyester membrane layer (Mylar, 6µm). An assem-
ble jig is used for the alignment of the carbon fiber frame
to ensure consistent results. The wing used on the flapping-
wing robot has an area of 1127 mm2 with the total length
R = 76 mm as listed in Table 2. The coupler connecting the
wing and themotor shaft is 3D printed from stereolithography
resin (Black Resin, Formlabs Form 2).

B. EXPERIMENTAL SETUP
Figure 5 depicts the experimental setup. The robot was
mounted on the multi-axis force/torque sensor (Nano17, ATI)

TABLE 2. Robot parameters.

with the sensor’s Z axis aligned with the lift direction. The
force and torque data from the sensor were recorded using
the xPC system (Mathworks) at 5 kHz, together with the
current and voltage data of the motor. We take the force
measurements from along Z axis of the sensor as the lift
generated by the robot. From our sensor calibration tests
(see the electronic supplementary materials), we achieve the
force resolution of ∼ 0.5 mN when the sensor is thermally
insulated.

A high-speed camera (MIKROTRON MotionBLITZ
EoSens Mini 2) is mounted above the wing to capture the
flapping stroke angle at 1440 frames per second. The camera
is triggered by the xPC system, allowing the driving signal,
the force measurements, and the wing kinematics to be syn-
chronized. A customized wind generator was made from an
array of 4× 5 12-V DC cooling fans with an aluminum flow
straightener for providing frontal winds for the flapping-wing
robot (see details in the supplementary materials). In steady
state, the wind generator is able to consistently produce wind
with the speed ranging from (0.5−2.5)±0.05 m·s−1 depend-
ing on the command signal. With the small temporal variation
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in wind speed (±0.05 m·s−1), we treat the wind speed as a
constant parameter for each flapping experiment.

C. ESTIMATION OF PARAMETERS
1) SYSTEM PARAMETERS
To identify some system parameters that determine the sys-
tem’s response according to equations (2) and (24), we manu-
factured a single-wing flapper consisting of a wing driver and
wing spars without the membrane. Without the membrane,
the wing experiences negligible aerodynamic forces in the
flapping motion and the dynamics of the robot reduces to that
of a second-order linear system:

Jm
Ku
φ̈ +

B1
Ku
φ̇ +

Ks
Ku
φ = u (26)

With a sinusoidal input in the standard form u (t) =
(u0 sinωt + θ), the flapping amplitude is related to the driv-
ing frequency and amplitude according to(

Ks
Ku
−

J
Ku
ω2
)2

+

(
B1
Ku
ω

)2

=

(
u0
φ0

)2

. (27)

We performed a simple system identification experiment
by driving the membrane-less flapper with sinusoidal sig-
nals with different frequencies, ranging from 14 to 20 Hz.
The experiments were carried out at two signal amplitudes
(u0 = 0.30, 0.35). The high-speed camera captured the
wing kinematics. The flapping amplitudes extracted from the
video footages are plotted against the driving frequency as
points in figure 6. With seven different operating frequen-
cies and two signal amplitudes, 14 equations derived from
equation (27) were used to compute the values of Jm/Ku,
B1/Ku, and Ks/Ku using the method of least-squares. These
model parameters are listed in table 2. The identified model
parameters suggest the natural frequency ω0 of 2π × 16.4
rad/s. At this frequency, the robot with the wing membrane is
anticipated to produce the maximum lift. The peak frequency,
at which the largest flapping amplitude is expected, on the
other hand, is approximately 15.5 Hz according to figure 6.
The fitted model, also shown in figure 6, reveals a good fit
to the experimental data. This verifies that the linear model is
sufficiently accurate to capture the dynamics of the actuation
system when aerodynamic forces are excluded.

2) WING HINGE STIFFNESS
The passively rotating hinge is manufactured resembling the
design in [27]. The hinge is made from five layers of mate-
rials by sandwiching a flexible material between rigid struc-
tures. The top and bottom layers are symmetrically aligned
stereolithography resin with the thickness of 500 µm. The
middle layer is a flexural material (Kapton, Dupont, 200HN).
Two pressure sensitive adhesive layers (EL-92892, Adhesives
Research) are used to bond the flexural material and the resin
layers. When torque applied, it results in a bending along the
middle portion of the flexure. The torques required are plotted
against the rotation angle in figure. 7, giving the estimated

FIGURE 6. System identification results. The plot shows the flapping
amplitudes of the membrane-deprived robot when subject to driving
signals with different frequencies at two input amplitudes. The lines
represent the anticipated response of the identified linear second order
model.

FIGURE 7. The results of the hinge stiffness tests. The torque
measurements verify that the torsional stiffness is approximately linear.

rotational stiffness of 0.66 Nmm·rad−1. Further detatils of the
hinge stiffness test are given in the supplementary materials.

Theoretically, the rotational stiffness of the hinge can be
approximated by that of a linear elastic beam deforming
under an external moment as kh = Et3w

12l , where E represents
the Young’sModulus of the flexural material with thickness t .
w and l represents the width and the length of the hinge gap.
The hinge used in the experiments is made from Kapton with
E = 2.5 GPa, t = 75 µm, w = 6.7 mm, and l = 0.7 mm,
which results in a theoretical stiffness of 0.84 Nmm·rad−1.
The small discrepancy between the measurement and the
theoretical values could be due to the softening effect or the
strong dependent on the thickness t , which may locally vary
in the actual material.

D. FLAPPING EXPERIMENTS
The flapping experiments were conducted by driving the
DCmotor with sinusoidal inputs with the amplitude from 4 V
to 6 V (u0 = 0.4−0.6), at different frequencies from 15 Hz to
21 Hz. The frontal wind speed varies from 0 to 2.5 m·s−1 with
an increment of 0.5 m·s−1. The force and torque data along
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FIGURE 8. Measurements from the flapping experiments when the robot was driven with u0 = 0.50 at the flapping frequency of
18 Hz under two frontal wind conditions (vw = 0.0,2.0 m/s). (a), (b) the measurements of flapping angles taken from the
high-speed video (dots) with the sinusoidal fit (lines) in the form φ

(
t
)
= φ0 sinωt . The red dots, labelled A, B and C, correspond

to the frames captured by the high-speed camera in (e). The flapping amplitudes when vw = 0.0 and 2.0 m/s are nearly
identical. (c), (d) the instantaneous force measurements from the two flapping conditions. Each line represents the averages of
over 30 cycles. The overall stroke-averaged values are indicated by horizontal dashed lines.

the X , Y and Z axis of the sensor were recorded using the
xPC system (Mathworks) at 5 kHz, together with the current
and voltage of the motor. We performed 105 flapping trials,
56 of which are in the presence of winds. We attempted to
minimize the number of experimental trials to avoid possi-
ble damge and potential mechanical fatique of the flexural
wing hinge as observed in other robots [39]. The mechani-
cal wear may reduce the hinge stiffness over time, making
comparison of measurement results between different trials
unreliable.

In each flapping trial, the stroke-averaged lift value was
taken from 30-50 flapping cycles. The flapping amplitudes

are obtained from the sinusoidal fit of the flapping
angles extracted from 60 image frames. From 107 trials,
the dataset covers a reasonable range of flapping amplitude
(≈ 30◦ − 60◦). The stroke-averaged lift ranges from
7.4 to 23.9 mN, with the average of 14.8 mN. In the absence
of frontal wind, the maximum lift of 16.7mN was achieved
when the flapping amplitudewas 60◦ as the sinusoidal driving
voltage with 6 V amplitude was used. The generated lift
and stroke amplitude are comparable to other direct-drive
flapping-wing robots with similar sizes [33], [40]. Moreover,
there is still room to achieve a higher lift as the input signal
can be further amplified.
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The Given the wing length of 76 mm and the kinematic
viscosity of air (ν), the Reynolds number of our flappingwing
robot is

Re = (ωφ0R+ vw)
R
ν

∼ 4× 104, (28)

where the maximum advance ratio is found to be

J =
vw
ωφ0R

= 0.33. (29)

Figure 8(a)-(b) demonstrates the wing kinematics of the
robot extracted from the video footage from two trials when
the robot was commanded to operate at 18 Hzwith the driving
amplitude u0 = 0.50. In the first case, figure 8(a), the
robot experienced no external gusts, whereas in figure 8(b),
it was subject to 2.0-ms−1 wind. Comparing the data to
their respective fitted wing kinematics in the form φ (t) =
φ0 sinωt , it can be seen that, the actual wing kinematics
are highly sinusoidal for both cases, meeting our assumption
in Section III-D. The flapping amplitude, in this case, are
generally smaller than those obtained from the identification
experiment despite the fact that the robot was subject to larger
input amplitudes. This evidently demonstrates the effects of
aerodynamic drag on the flapping amplitude as predicted by
the model. Furthermore, herein, we do not observe a notable
difference in amplitude whether or not the wind is present,
suggesting that the presence of the frontal wind only trivially
affects the flapping kinematics in practice.

Forcemeasurements along the lift direction from the sensor
belonging to the two trials are shown in figure 8(c)-(d).
It can be seen that the measurements reveal that forward and
backward strokes are not perfectly symmetrical. This is likely
owe to the asymmetric design of the hinge and the wing,
and the imperfect fabrication. The asymmetric is difficult to
avoid in small flapping-wing robots as seen in other notable
prototypes [12], [27], [40]. In addition to the aerodynamic lift,
the sensor measurements include the inertial effects from the
wing. The measurements, therefore, include higher harmonic
components from the inertial terms and the oscillation. Since
the stroke-averaged contribution from the inertial terms is
zero, the time-averaged data represents the mean lift. For the
case without wind, the measurement reveals the existence of
a second harmonic element as themajor component due to the
symmetry between the forward and backward strokes. The
presence of higher harmonic components are likely due to
the vibration of the robot and the setup. The wind results in
an apparent change in the instantaneous force, rendering the
difference between the forward and backward strokes more
pronounced in figure 8(d) when compared to figure 8(c).
The instantaneous force measurements are on the order of 50
mN, considerably larger then the sensor’s uncertainty in ideal
operating conditions of 0.3 mN. The instantaneous forces are
somewhat larger than the time-averaged values of 11.6 and
14.7 mN. We believe the large oscillations are attributed by

FIGURE 9. Experimental measurements and the aeromechanic model
predictions of the stroke-averaged lift plotted against 1

2kh
ρAccpv2

φ
(from

the measured flapping amplitude) and 1
2kh

ρAccpv̄2
⊥

(from the measured
flapping amplitudes and frontal wind speed). The color gradient shows
the magnitude of the predicted force. The colored circular markers
correspond to the experimental data.

the vibration as well as the inertial forces from the motor and
the wings. Nevertheless, the observed oscillations should not
affect the time-averaged values, which correspond to the lift
generated by the robot.

VI. MODEL VERIFICATIONS
A. AEROMECHANIC MODEL
From the measurement of lift and flapping amplitudes,
together with the knowledge of the flapping frequency and
frontal wind speed, we employ the proposed aeromechanic
model given by equation (20) to predict the mean lift and
compare the predictions with the measurements. For the
model, we assume the ccp of 9.7 mm—the value near the
v⊥ → 0 limit—and the r̂ of 0.72, slightly higher than the
actual r̂1 and r̂2. As r̂i is determined solely on the wing
shape, the discrepancy may be induced by the imperfect
fabrication. In our case, r̂ can also be regarded as an empirical
quasi-steady model parameter as we do not directly fit lift
and drag coefficients (CL0,CD0,CD1) as commonly seen in
literature [40], [41]. Relevant model parameters related to
the wing and the hinge stiffness are summarized in table 2.
The model predictions and experimental results are displayed
based on the component corresponding to the speed of the
wing ( 12ρAccpv

2
φ) and the component corresponding to the

external wind ( 12ρAccpv̄
2
⊥
) as shown in figure 9. Qualitatively,

it can be seen that the model predictions are consistent with
the measurements. The model accurately predicts an increase
in lift at higher wing speed or wind speed. For all 107 data
points, the root mean square (RMS) of the prediction errors
is 2.0 mN—approximately 14% of the average of all mea-
surements (14.8 mN). The corresponding R-squared value
is 0.87.
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FIGURE 10. Examples of the flapping amplitudes (a) and stroke-averaged lifts (b) from the experimental measurements and the
integrated model predictions (without directly using the measurement of flapping amplitudes or wing rotation angles).

B. SYSTEM MODEL
In addition to the stroke-averaged lift, the aeromechanic
model developed in Section III-D also provides an expression
of the amplitude of the principal component of the drag
produced by the flapping wing. Under the assumption that
the torque about the flapping axis is proportional to this
aerodynamic drag (with rcp being the spanwise center of
pressure), the systemmodel equation (25) relates the flapping
amplitude (φ0), angular velocity (ω), and wind speed (vw)
directly to the amplitude of the driving signal u0. Based on
the model parameters identified in Section V-C.1, we re-write
equation (25) as(
Ks
Ku
−

J
Ku
ω2
)2

φ20 +

(
B1
Ku
ωφ0 +

rcp
Ku

r
F̂D

z)2

=u20, (30)

leaving rcp/Ku as the only unknown parameter. Using the pre-

vious aerodynamic parameters for the calculation of
r
F̂D

z
,

and through the method of least squares, we find that our
model provides a good agreement with the experimental data
when rcp/Ku = 7.93 N−1, capable of predicting the flapping
amplitudes from u0 and vw with the RMS error of 2.2◦. The
corresponding R-squared value is 0.95.

To observe the effects of frontal wind on the flapping
amplitudes, we inspect the case where the robot was driven at
18 Hz, using the driving amplitude u0 = 0.5 and 0.6. The plot
of measured and predicted flapping amplitudes at different
frontal wind speeds is shown in figure 10(a). As anticipated,
greater driving signals result in larger flapping amplitudes.
The experimental data reveal that the wind speed has minimal
effects on the flapping amplitudes, while our model suggests
slight changes to the amplitude. Overall, the mismatches
between the predictions and the measurements are within a
few degrees.

In fact, the subtle changes in the flapping amplitude,
according to equation (30), suggest insignificant effects of
the wind on the

r
F̂D

z
term. According to the calculation,

the observed amplitudes correspond to 1
2ρAccpv

2
φ ≈ 0.2 and

0.3 for u0 = 0.5 and 0.6 respectively. As seen in figure 4,
our model predicts some reduction in

r
F̂D

z
as the wind

speed increases at these conditions. This is consistent with the
prediction of a small rise in the flapping amplitude from the
system model here. However, the decrease in the drag turns
out to be relatively unimportant at the system level in this
circumstance, resulting in marginal changes in the flapping
amplitude, unobserved in the experimental data. The major
reason for this is because our robot exhibits relatively high
power dissipation in the linear damping term (B1φ̇) relative
to the nonlinear aerodynamic damping.

C. INTEGRATED MODEL
The system model provides the predictions of the flapping
amplitudes from the knowledge of robot’s parameters and the
driving signals. It follows that we can employ the aerome-
chanic model to directly predict the stroke-averaged lift from
the computed flapping amplitudes, instead of relying on the
angle measurements. The integrated strategy potentially sim-
plifies the experimental requirements, allowing researchers
to understand the flapping-wing aerodynamics without direct
measurements of the flapping amplitudes or wing kinematics
of the robots.

Based on the computed flapping amplitude, the aerome-
chanic model provides the lift force predictions with the RMS
error and the corresponding R-square value of 1.57 mN and
0.90 respectively. The RMS error of the combined method
is slightly lower then that of the aeromechanics model alone
(1.87 mN). We believe this could be contributed by the
inaccurate measurements of the flapping amplitudes as each
measurement is achieved using sequence of images from
1-2 flapping cycles only.

Figure 10(b) exemplifies the lift prediction at different
wind speeds when the robot was driven at 18 Hz with the
driving amplitudes u0 = 0.5 and 0.6. Both predictions and
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FIGURE 11. Frequency response of the flapping wing robot under two frontal wind speeds. Vertical dotted lines indicate the natural
frequency of the system. The crosses mark the anticipated peaks in lift and flapping speed according to the models. (a), (b) the flapping
amplitudes as predicted (lines) and measured (dots). (c), (d) the stroke-averaged lifts from the measurements and the integrated model.
flapping speeds from the measurements of φ0 and the model predictions.

measurements reveal a marked increase of up to 40% in
lift as the wind speed rises from 0 to 2.5 m/s. The results
demonstrate that the frontal wind radically amplifies the lift
generated by the robot.

D. NATURAL FREQUENCY ANALYSIS
To see the influence of the flapping frequency on the dynam-
ics of the system, we plot the robot’s flapping amplitude, lift,
and the maximum wing speed when the robot was driven at
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different frequencies, from 15 to 21 Hz, at two driving ampli-
tudes. The results are shown in figure 11. Two scenarios—no
frontal wind and 2.5-m/s frontal wind—were selected to high-
light the impact of the frontal wind.

According to the deduced system parameters in table 2, the
natural frequency of the robot, where the maximum flapping
speed is expected, is 16.4 Hz, independent of the frontal
wind speeds. In regular circumstances, the peak frequency,
at which the flapping amplitude is maximized, is anticipated
to be lower than the natural frequency following the analysis
in [9]. Figure 11(a)-(b) displays the measured flapping ampli-
tudes of the robot alongside the predictions from the inte-
grated model. Both show the substantial decrease in flapping
amplitude as the flapping frequency rises. It can also be seen
that, the measured amplitudes do not vary visibly with the
introduction of the wind, whereas the model predicts a slight
boost in the flapping amplitudes. However, the discrepancy
is not significant. The observation here is consistent with
the results in figure 10(a), which shows little changes in the
flapping amplitude when the frontal wind is introduced.

Figure 11(e)-(f) illustrates wing speeds from the measure-
ments and the predictions from the integrated model. The
model predicts that the wing speed should be highest at the
natural frequency (indicated by the dotted lines). With some
degree of uncertainty, our measurements follow the predicted
course, showing small variation in the flapping speeds near
the natural frequency of 16.4 Hz, with a visible roll off at
higher frequencies. The trend applies to both driving signal
amplitudes, with and without the frontal winds.

Regarding the stroke-averaged lift, our analysis suggests
that the natural frequency leads to the maximum lift only
when the wind is absent. This is, to some extent, agrees
with the observation in figure 11(c). With the 2.5-m/s frontal
winds, the combined model indicates that the lift should peak
at frequencies higher than the natural frequency, marked by
crosses in figure 11(d). The measurements suggest that the
lift reaches the maximum at the frequency perceptibly higher
than the natural frequency, consistent with the prediction.

VII. CONCLUSION AND DISCUSSION
In this study, we investigate the impact of frontal winds on
a flapping-wing robot. The work focuses on a class of small
flapping-wing robots that (i) are capable of resonance from
the inclusion of a compliant transmission (ii) incorporate pas-
sively rotating wing hinges for lift generation. Compared to
traditional rigid transmissions, uses of compliant components
are increasingly more prevalent in small robots as they reduce
the number of parts and lower the actuation requirement [26].
Similarly, the use of flexural wing hinges, which eliminates
the need to directly control and actuate the wing rotation,
is one of the key techniques that lead to flight capable insect-
scale robots [5], [27].

Leveraging the assumption of balanced torque introduced
in [29], the angle of attack of a flapping-wing robot with
an elastic wing hinge can be approximated in terms of the
airspeed. It follows that the lift and drag coefficients for

quasi-steady models, and, subsequently, lift and drag, can
essentially be expressed using the airspeed only. This signifi-
cantly simplifies the analysis. We further propose to write lift
and drag coefficients as polynomial functions of the airspeed.
As a result, one can analytically evaluate the stroke-averaged
lift and the leading harmonic component of drag based on the
wing kinematics only. The proposed method also extends to
the case of flapping-wing robots facing frontal winds.

The developed aeromechanic method is integrated to the
systemmodel. This enables the prediction of lift force directly
from the robot’s driving signal, bypassing the need tomeasure
the flapping amplitude or the angle of attack. The analysis
covers the resonance principles, for describing the response
of the system to different driving frequencies.

The experiments were performed on a DC-motor-driven
single-wing robotic flapper with a wing semispan of 76 mm.
We performed 107 flapping trials using different input sig-
nal amplitudes and frequencies, in various frontal wind
conditions. Mean lift forces and flapping amplitudes were
measured. The flapping conditions corresponded to the inter-
mediate to high Reynolds number (Re∼ 4 × 104), while
the maximum advance ratio was ∼ 0.33. The results are
considered, first, with respect to the proposed aeromechanic
model, and, second, to the integrated system model. Overall,
the measurements are consistent with the model predictions.

A. EFFECTS OF ADVANCE RATIO
Previously, studies on aerodynamics of flapping wing in for-
ward flight or in the presence of frontal winds commonly
rely on the dimensionless quantity, J—the advanced ratio,
to quantify the effects of the forward movement in compari-
son to the reciprocating movement of the wing [18]–[21]. In
the listed references, the changes from baseline aerodynamics
in lift and drag coefficients (or forces), are described using the
notion of the advance ratio.

In our work, we show that, based on the traditional defi-
nitions of the quasi-steady models, the contribution from the
frontal wind should be expressed in terms of v⊥ = vw cosφ.
While, vw/vφ is directly proportional to the advance ratio,
v⊥, alone, is not, as it includes the cosφ term. When taking
the average of the whole flapping period, the quantity of
interest becomes v̄⊥ = vwJ0 (φ0) as given by equation (17).
Our analysis suggests that, for the case of frontal winds,
the flapping amplitude is a factor that needs to be taken into
account. This is sensible as the wind direction becomes less
perpendicular to the wing surface at large flapping angle.
It follows that, the rest of this paper uses v̄⊥, not J , to describe
the contributions of aerodynamic forces stemmed from the
frontal winds. The experiments were also performed on a
robot at a range of flapping amplitudes, from 30◦ to 60◦,
and the results demonstrate reasonable agreements with the
proposed method.

In comparison to a number of previous works that employ
J in the analysis for forward flight or frontal winds, our
outcomes reinforce, rather than contradict, their results. This
is because in each of the listed studies [18], [19], [21], the
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FIGURE 12. Prediction errors of predicted lifts at different frontal wind
speeds using (a) the integrated model, and (b) the benchmark model
assuming a prescribed wing rotation.

experiments therein were performed at a single, fixed stroke
amplitude. This renders the term denoted as v̄⊥ in our work
simply proportional to the wind speed. Then, the ratio of v̄⊥
to vφ is proportional to J , making J a valid choice of variable
for their respective analysis.

B. COMPARISON TO MODEL WITH PRESCRIBED
WING ROTATION
To further evaluate the results, we compare our proposed
methods to an existing approach. Traditionally, for a flapping-
wing robot with flexural wing hinges, when the measure-
ments of the wing rotation angle are unavailable, researchers
often assume that the wing rotation follows some prescribed
kinematics. For example, for a sinusoidal flapping trajectory,
φ (t) = φ0 sinωt , it is reasonable to assume a sinusoidal
wing rotation angle ψ (t) = 1

2ψ0 (1+ cos 2ωt), with ψ0
denoting themaximumwing rotation angle. Instantaneous lift
force from the flapping motion can be calculated according to
equation (6) in the same way regardless whether there exists
a frontal wind. This way, however, the wing rotation angle is
assumed unaffected by the frontal wind.

To see the lift prediction from this quasi-steady model
with a prescribed wing rotation, we calculate the stroke-
averaged lift using the flapping amplitude measurements.
In this case, we also use a single value of r̂ in place of r̂1
and r̂2 for consistency with our proposed model. In addition,
ψ0 is treated as another tuning parameter. We find the values
of r̂ and ψ0 that minimize the RMS error between the lift

predictions and the experimental results. It turns out that the
RMS error from this benchmark model is minimized when
ψ0 = 45◦ and r̂ = 0.72 (almost identical to 0.73 used for
the integrated model). Overall, the resultant RMS error of
the lift prediction is 1.63 mN, slightly larger than that of our
proposed model (1.57 mN). However, it is important to take
into consideration the fact that our integrated model makes
the prediction entirely based on the driving signal with only
one tuning parameter (r̂), unlike the benchmark model that
requires measurements of the flapping amplitude and two
tuning parameters (r̂ and ψ0).

To compare the proposed integrated model with the bench-
mark method more closely, figure 12 shows the prediction
errors (the difference between the predicted lifts and mea-
sured lifts) from both models, categorized based on different
frontal wind speeds. The overlaid boxplots illustrate the mean
and the standard deviation of the errors. It is observed the the
standard deviations from both approaches are comparable.
While the overall errors are also similar, the mean errors
from the benchmark method tend to be larger than that of the
proposed method.

More interestingly, when we calculate the correlation coef-
ficients between the lift prediction errors and the frontal
wind speeds, we find that there is insignificant correlation
(0.17) from the prediction errors belonging to the integrated
model, whereas the errors from the benchmark model result
in a moderate negative colleration (−0.49). These correlation
coefficients indicate that, the integrated model is equally
accurate, irrespective to the wind speed. On the other hand,
the benchmark model overestimates the lifts in the absence
of wind and underestimates the lifts when there exists strong
winds. The moderate correlation of the benchmark model
points to the presence of systematic errors. In other words,
it suggests that the benchmark model cannot truly capture
the effects of the frontal winds and the relatively small RMS
errors in the lift estimates are the results of the parameter
tuning process. This is unlikely to be the case for our proposed
integrated model.
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