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Abstract—Mobile robots have revolutionized various fields,
offering solutions for manipulation, environmental monitoring,
and exploration. However, payload capacity remains a limitation.
This paper presents a novel thrust-based robotic hopper capable
of carrying payloads up to 9 times its own weight while
maintaining agile mobility over less structured terrain. The 220
gram robot carries up to 2 kg while hopping—–a capability that
bridges the gap between high-payload ground robots and agile
aerial platforms. Key advancements that enable this high-payload
capacity include the integration of bidirectional thrusters, al-
lowing for both upward and downward thrust generation to
enhance energy management while hopping. Additionally, we
present a refined model of dynamics that accounts for heavy
payload conditions, particularly for large jumps. To address the
increased computational demands, we employ a neural network
compression technique, ensuring real-time onboard control. The
robot’s capabilities are demonstrated through a series of exper-
iments, including leaping over a high obstacle, executing sharp
turns with large steps, as well as performing simple autonomous
navigation while carrying a 730 g LiDAR payload. This showcases
the robot’s potential for applications such as mobile sensing and
mapping in challenging environments.

Index Terms—Hopping, legged robots, high payload, neural
network, SLIP, autonomous navigation.

I. INTRODUCTION

MObile robots have emerged as versatile platforms for a
wide range of applications, making impacts on various

fields including manipulation [1], [2], environmental monitor-
ing [3]–[5], subterranean [6] and space [7] exploration, and
disaster response [8]. Their ability to navigate and operate in
environments that are dangerous or inaccessible to humans
makes them invaluable tools across various domains.

When considering complex and unstructured environments
where wheeled robots struggle, among the most widely
adopted mobile robot platforms for real-world applications
are legged robots and aerial robots, each offering distinct
advantages and limitations. Legged robots, such as quadrupeds
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Fig. 1. A 220 g thrust-based hopping robot constructed from a quadcopter
(160 g) and a passive leg (60 g) demonstrating an ability to carry a 730 g
LiDAR payload for mapping applications. Despite a thrust limit of only 440
g, the hopper is able to carry as much as 2 kg.

[6], [7] and humanoids [9], excel in their ability to navigate
uneven terrain [9]–[11] and carry substantial payloads [12],
[13]. Their multi-jointed limbs allow for precise foot place-
ment and force control, enabling them to climb stairs, step over
obstacles, and maintain stability in challenging environments
[14]. However, they typically exhibit slower speeds compared
to aerial platforms and may struggle in extremely cluttered
environments. Conversely, aerial robots offer rapid movement
and the ability to bypass obstacles by flying over them [15]–
[17]. Nevertheless, they are often constrained by limited pay-
load capacity [18], endurance [19], and reduced manipulation
capabilities [2], [20].

To harness the strengths of both legged and aerial platforms,
researchers have proposed hybrid robotic platforms that aug-
ment humanoid robots with thrusters or flight components,
enabling them to overcome large obstacles or traverse gaps
through short-duration flights [21], [22]. An alternative strat-
egy, which forms the basis of this work, involves equipping a
quadrotor with a passive, springy leg [23]–[26]. This design
leverages the quadrotor’s existing actuators for both flight and
terrestrial locomotion. It maintains a compact form factor and
retains flight efficiency, without requiring additional actuators
that would increase both weight and power consumption.

Incorporating a passive leg transforms a quadcopter into a
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thrust-based hopper, facilitating continuous jumping akin to
leg-actuated hopping robots [27]–[35]. The stance dynamics
of this hybrid system can be approximated using a spring-
mass model, drawing parallels to the well-studied Spring-
Loaded Inverted Pendulum (SLIP) model [36]–[38], albeit
with notable differences in actuation and control strategies.
The elastic leg enables energy recovery during landing, signif-
icantly enhancing efficiency compared to conventional flying
robots. PogoDrone demonstrated a 20% reduction in power
consumption compared to hovering [23], though its efficiency
was limited by position control methods requiring a thrust-
to-weight ratio exceeding unity. More recent platforms such
as Hopcopter [24], PogoX [25], and MultiMo-MHR [26]
have further improved efficiency through model-based hopping
controllers, enabling continuous locomotion with thrust-to-
weight ratios below one. Despite these advances, the maximum
payload capacity of thrust-based hopping robots remained
unexplored and unvalidated.

This paper presents a 220 g legged quadcopter capable of
carrying payloads up to 2 kg (Fig. 1 and Video S1), effectively
overcoming the severe payload limitations of conventional
flying robots. Compared to its 35-g predecessor [24] (see
also Table S1 in the Supplementary Materials), the scaling up
dramatically increases both absolute payload capacity (2 kg
vs 8 g) and relative payload-to-mass ratio (9.1 vs. 0.23), im-
proving autonomy by allowing integration of a 730-g LiDAR
and onboard computer for autonomous navigation.

Two key technical advancements over previous thrust-based
hopping robots [23]–[26] underpin this work. First, we intro-
duce bidirectional thrusters [39]–[43], enabling the robot to
accelerate towards the ground during the descending phase of
its hop. This additional actuation mechanism allows the robot
to compensate for the increased energy dissipation resulting
from heavier payloads, significantly expanding its load-bearing
capabilities. To fully leverage this modification, the hopping
controller is also redesigned to regulate downward thrust,
ensuring controlled landings and improved energy efficiency.
Second, we present a more comprehensive derivation of the
stance phase dynamics. Unlike our previous model [24], this
approach incorporates the weight of both the robot and its
payload during the stance phase. While this consideration
notably increases the model’s complexity [37], it is essen-
tial for maintaining satisfactory hopping performance as the
robot’s mass becomes substantial. To address the increased
computational demands of this more sophisticated model,
we employ a neural network (NN) compression technique
[44], ensuring efficient onboard control. These enhancements
enable the robot to perform aggressive and agile maneuvers—-
such as jumping over obstacles and executing sharp turns
with large steps, even with significant payloads-that were not
demonstrated in not previously demonstrated in [23]–[26].

The remainder of this paper is organized as follows:
Section II details the design and operating principles of
the hopping platform with bidirectional thrusters. Section
III provides an analysis of the enhanced payload capability
achieved through the combination of elastic leg mechanisms
and bidirectional thrust. Section IV presents the compre-
hensive dynamic model of the hopping robot, including the

refined stance phase dynamics. Section V describes the neural
network-based approach for efficient onboard control. Section
VI outlines the control strategies for maintaining hopping
height and trajectory following with bidirectional thrusters
and varying payloads. Experimental results demonstrating the
robot’s performance in carrying heavy payloads and navigating
autonomously are presented in Section VII. Finally, Section
VIII concludes the paper with a discussion of the implications
of this work and potential future directions.

II. HOPPING PLATFORM WITH BIDIRECTIONAL
THRUSTERS

A. Prototype with Bidirectional Thrusters

The design of the robot is based on our previous thrust-
based hopper, the Hopcopter [24], combining a quadcopter
with a passive leg (Fig. 2A). The quadrotor consists of a
flight control board (Bitcraze, Crazyflie bolt 1.1) and four
sets of brushless motors with 3.5 inch propellers. In addition,
we employ bidirectional electronic speed controllers (ESCs,
Flycolor X-Cross 45A). This allows each rotor to generate
forward (upward) or reverse (downward) thrust depending on
the spinning direction as shown in Fig. 2D.

To account for the difference in aerodynamic efficiencies of
propellers in the forward and reverse configurations, we tested
four types of propellers (diameters between 3 to 4 inches) for
thrust and torque coefficients in both configurations following
the protocols in [45] as detailed in Supplementary Materials.
The results reveal that the ratio of thrust coefficients in the
reverse direction to forward direction, defined as γ, varies from
−0.36 to −0.56. The propeller type with the highest absolute
γ (0.56) was selected.

As a hopper, the upper leg section is attached underneath
the quadcopter with a telescopic lower section and a rubber
foot. As illustrated in Fig. 2B, the lower leg is constrained
to the upper leg via two sets of bearings, constraining the
movement to a single degree of freedom while minimizing the
sliding friction. The telescopic motion is spring-loaded with
elastomer (rubber bands). In the default state when the leg
length is l0, this elastomer is pre-streched by a length lp. The
leg contraction results in further elongation of the elastomer
beyond lp (Fig. 2C). As used in [24], this strategy permits
more elastic potential energy to be temporarily stored in the
leg structure upon landing under the same leg contraction. The
physical parameters of the hopping robot are listed in Table
S2. The mass of the robot (without payload) is mr = 220 g ,
with the component breakdown listed in Table S3.

B. Thrust-based Hopping Strategy

Unlike previous hopping robots that used a moving mass
[35], [46] or leg motors [29], [31], this robot utilizes the thrust
generated by propellers to regulate the hopping locomotion
as the robot alternates between aerial and terrestrial phase.
In addition, the energy injection happens in the aerial phase,
instead of the stance as leg-actuated hopper [28], [32], [47].

During the aerial phase, energy loss due to air drag is
negligible, as the robot’s vertical speed remains relatively
low (ranging from 3.3 m/s to 3.9 m/s, corresponding to a
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Fig. 2. Hopping robot design and major components. (A) Model of the prototype based on a multirotor vehicle with four bidirectional thrusters. Payload can
be attached on top of the robot. (B) An unactuated telescopic leg is affixed underneath the quadcopter. (C) Upon landing (ground contact), the leg undergoes
compression, stretching the rubber bands. This results in the hopping motion. (D) Bidirectional electronic speed controller permits the robot to generate both
upward and downward thrust by reversing the propeller’s spinning direction. This further enhances the payload carrying capacity for hopping.
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Fig. 3. Operating principles of a thrust-based hopping robot. As a hybrid
dynamical system, the robot alternates between aerial and terrestrial phases,
with landing and takeoff transitions. Thanks to the unactuated spring-loaded
leg, the hopper swings passively in the stance phase. To retain the desired hop-
ping height and control the hopping trajectory, propelling thrust is employed
to compensate for viscous losses and attitude control in the aerial phase.

jumping height of 0.55 m to 0.75 m), and its small cross-
sectional area minimizes aerodynamic resistance. As the robot
transitions from the aerial phase to the passive stance phase,
the ground reaction force induces the leg to retract, elongating
the elastomer. The landing impact on the ground and the
viscous dissipation of the leg mechanism during stretching and
compressing lead to a proportion of energy loss in the stance
phase [24]. Consequently, the takeoff speed will be smaller
than the landing speed. Without compensation, the total energy
of the system would gradually decrease with each hopping
step.

To retain the hopping height, energy is injected into the
system during the aerial phase via propelling thrust as il-
lustrated in Fig. 3. Forward (upward) thrust is applied when
the robot ascends, immediately after the robot takes off. This
powered ascent strategy was similarly adopted in [24]. Thanks

to the use of bidirectional thrusters introduced in this work,
the robot gains the ability to add more energy into the system
via powered descent. This is by applying reverse (downward)
thrust prior to landing to accelerate the fall. The use of
powered descent is beneficial when the robot carries a heavy
payload, which incurs larger energy loss in the stance phase.

Apart from compensating for the energy lost, propelling
torque is responsible for stabilizing the attitude of the robot in
flight. This is used to manipulate the hopping trajectory. Unlike
flying, the hopping trajectory is influenced by the attitude of
the robot at the moment it lands on the ground. This hopping
principle applicable to the robot with a single passive leg
is detailed in Section IV, leading to the development of the
hopping controller presented in Section VI

III. ENHANCED PAYLOAD CAPABILITY THROUGH
BIDIRECTIONAL THURST

In this section, we analyze the enhanced payload capa-
bility of our hopping robot, which is achieved through the
combination of an elastic leg mechanism and a bidirectional
thrust strategy. We present a simple model to quantify this
enhancement and compare our results with experimental data
and other mobile robots.

Consider a thrust-based hopping robot of mass mr carrying
a payload of mass mp, the amount of energy for the robot
to reach the hopping height h is (mr + mp)gh. We define
η as the proportion of energy lost per jump, accounting for
energy dissipation at landing due to ground impact and leg
mechanism.

For the robot to maintain a continuous jump at height h,
it must be actuated to compensate for the energy loss. This
is ideally achieved by applying upward (forward) propelling
thrust Tf during ascent and downward (reverse) thrust Tr
during descent when the robot is in the air as depicted in
Fig. 3. The total energy injected per cycle is (Tf + Tr)h.
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Fig. 4. Payload capability of various robots. (A) Absolute payload limit versus mass for thrust-based hopping robots according to their thrust-to-weight ratios
Γ and bidirectional thrust efficiency γ, assuming η = 0.25. The plot shows that scaling up the 35-g robot from [24] to 220 g dramatically increases the
payload from 8 g to 2 kg, allowing the robot to carry LiDAR for autonomous navigation. (B) Theoretical payload limit of thrust-based hopping robots. The
plot shows the payload limit (mp normalized by the original robot’s mass mr as payload ratio mp/mr) against the thrust-to-weight (Γ = T/mr) ratio.
The proposed robot with Γ = 2 experimentally demonstrates its ability to carry a payload 9.1 times as heavy as its own weight when hopping. This limit
is increased with the use of directional thrusters (γ > 0). (C) Experimental payload ratios demonstrated by mobile robots across size scales (wheeled robots
excluded). The plot highlights the superior payload capacity of the proposed thrust-based hopper, which also demonstrates an ability to overcome obstacles
and traverse over less structured terrain. For complete data and references, refer to Table S4.

To determine the energy loss, we start from the apex. The
total energy just before landing includes the potential energy
at the apex and the contribution from the reverse thrust during
descent (mr +mp)gh+Trh. Thus, the energy lost at landing
is η[(mr +mp)gh+ Trh].

To maintain hopping at steady height h, the energy balance
condition is:

(Tf + Tr)h = η [(mr +mp)gh+ Trh] , (1)

independent of h as it cancels out on both sides. Notice the
difference in the impact of forward and reverse thrusts. The
energy injected during the descent from the reverse thrust
is partially dissipated upon landing (ηTrh). Energy from the
forward thrust applied during ascent and is not subject to this
loss. This means the use of reverse thrust is less efficient than
forward thrust.

To determine the maximum payload mass mp, we consider
the maximum forward thrust using the notion of thrust-to-
weight ratio Γ = Tf/mrg. In addition, since the reverse thrust
is usually lower than the forward thrust, we introduce γ =
Tr/Tf ≤ 1 to indicate the performance of the bidirectional
thruster. Employing these definitions, (1) becomes:

mp

mr
= Γ

1 + (1− η)γ

η
− 1. (2)

To understand the significance of (2), we first consider a
regular flying robot with an identical thrust-to-weight ratio
Γ. In such a case, the maximum payload mass is given by
mp/mr = Γ − 1. In comparison, for thrust-based hopping,
the thrust-to-weight ratio is effectively amplified by a factor
of [1 + (1− η)γ] /η, implying the payload mass is upper
bounded by mp < (Γ [1 + (1− η)γ] /η − 1)mr. Fig. 4A and
B illustrate the absolute and relative payload limits achievable
by thrust-based hopping robots for selected values of Γ and
γ, assuming an energy loss factor of η = 0.25. Notably,
the payload capacity of hopping robots can be several times

greater than that of flying robots with the same thrust-to-
weight ratio.

This amplification is influenced by two key factors: γ and
η. The energy loss factor η is largely determined by the leg
efficiency and can be dependent on the hopping height. For
instance, previous 35-gram hopping robot with unidirectional
thrust (γ = 0) [24] has an estimated η of approximately
0.23 for jump heights from 0.68 m to 0.96 m. This implies
an amplification factor of approximately 4.4. Theoretically,
without considering control constraints, the 35 gram hopper
with a thrust limit of 42 gf could carry a payload of up to 150
grams when control is not considered. Therein, the robot was
able to hop while carrying a light payload with the total mass
mr +mp = 43 g, slightly over the thrust limit. However, the
true payload capability was not analyzed or examined.

In this work, we later experimentally demonstrate that the
proposed robot in Fig. 2A, with a mass mr = 220 g and
a maximum thrust of 440 gf (Γ = 2), is able to operate
reliably when carrying a 2.0 kg payload, thanks to the use of
bidirectional thrusters. This equates to a payload ratio mp/mr

of 9.1 and a total mass of 2220 g, 5.0 times as large as the
thrust limit. According to (2), the result implies a loss factor
η below 0.28. Moreover, without the use of reverse thrust
(γ = 0), the robot can still carry a payload as heavy as 1.5 kg,
implying a similar loss factor of η = 0.26. Compared to the
35-gram hopper in [24], this scaling up and the integration
of bidirectional thrusters dramatically increases the absolute
payload limit of the robot as shown in Fig. 4A.

Comparing with other aerial and terrestrial robots (exclud-
ing wheeled and tracked robots) with power autonomy [10],
[12], [13], [18], [27], [48]–[66] across size scales (Fig. 4C, see
Table S4 for details), the proposed robot shows a substantially
higher payload ratio while maintaining an ability to traverse
less structured terrain. Since absolute payload capacity is
strongly influenced by robot size, payload ratio provides a
more meaningful basis for comparison [12], [67], [68], partic-
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ularly across different scales. While not all referenced robots
are optimized for heavy payloads, payload capacity remains
a critical performance metric for the applications involving
transportation [12] and autonomy [58]. Among existing robots,
a crawling robot powered by fluidic elastomer actuators [57]
displayed an exceptional payload ratio of 8.8. However, the
crawling motion of the robot in [57] is far less agile (14 mm/s)
and incompatible with uneven ground. In addition, although
there exist high-performance racing drones with exceptionally
high thrust-to-weight ratios (∼ 4− 5 [16], [69] or as large as
12 [70]), they have yet to demonstrate heavy payload carrying
flight. More importantly, such systems would similarly and
dramatically benefit from hopping when it comes to payload
ratio as indicated by (2) and Fig. 4B.

IV. HOPPING DYNAMIC MODEL

The dynamics of the hopping robot can be divided into
two primary phases: the aerial phase and the stance phase.
The aerial phase is further subdivided into ascending and
descending states, as depicted in Fig. 3. Transitions between
the aerial and stance phases are marked as landing and takeoff
events. Within the aerial phase, the robot can be in either
powered or unpowered flight, regardless of whether it is
ascending or descending. The powered flight corresponds to
the robot actively generating thrust.

A. Model of the Flight Dynamics

Neglecting aerodynamic drag, in the aerial phase, the robot
is regarded as a rigid body of mass m = mr +mp, indistin-
guishable from a regular quadrotor. The translational dynamic
equation can be written into

mp̈ = Re3(−1)k
4∑

i=1

fi +mge3, (3)

where p = [x, y, z]T denotes the position of the robot in the
inertial frame, R is the rotation matrix associated with the
body frame, e3 = [0, 0, 1]T is a basis vector, k ∈ {0, 1}
indicates the spinning direction of the propellers (k = 0 for
forward thrust and k = 1 for reverse thrust),

∑4
i=1 fi is the

total thrust magnitude, and g is the free-fall acceleration.
The attitude dynamics in the aerial phase is governed by

Iω̇b + ωb × Iωb = τp, (4)

where I is the inertial tensor, ωb = [ωx, ωy, ωz]
T is the body-

centric angular velocity, τp is the torque generated by the
propellers.

Given the configuration of the robot with the propeller arm
length d, the torque in (4) can be derived as

τp =

4∑
i=1

li × e3fi + e3Mi, (5)

where li indicates the location of the ith rotor, for example,
l1 = d/

√
2[1,−1, 0]. Mi is the propeller’s induced torque.

Due to the asymmetric profile of the propeller blades,
individual rotor thrust fi and induced torque Mi are dependent
on the operating condition (forward or reverse thrust) as

testified in Supplementary Materials. Given the same motor
commands or spinning rate, the magnitudes of both fi and Mi

are reduced by a factor of γ and γm, respectively, for reverse
operations. This characteristic must be taken into account
when the low-level controller determines the motor commands
from the desired thrust and torque values.

B. Air-Ground Transition

As a hybrid dynamical system, the robot exhibits a discrete
dynamic behavior at the air-ground transitions.

Immediately after landing (timestamp: tLD), we consider the
non-slip pointy foot as a spherical joint. The stationary ground
contact point (pivot) can be regarded as the origin of the stance
phase model. Defining ps = [xs, ys, zs]

T as the position of the
Center of Mass (CoM) from the pivot, the initial position and
velocity of the stance phase can be computed from the aerial
phase state according to

ps(tLD) = R(tLD)e3l0 = zb(tLD)l0, (6)
ṗs(tLD) = ṗ(tLD), (7)

where l0 is the undeformed leg length. The landing timestamp
tLD can be solved for based on p(t) from (3) and R(t) from
(4) using

eT3 p(tLD) = eT3 R(tLD)e3l0. (8)

For the transition back from stance to aerial phase, the position
and translational velocity at takeoff time are continuous and
can be written as

p(tTO) = ps(tTO) + p(tLD), (9)
ṗ(tTO) = ṗs(tTO), (10)

with tTO being the takeoff time. This is when the elastic leg
recoils to its original length or

∥ps(tTO)∥ = l0. (11)

Meanwhile, the attitude and angular velocity of the robot at
takeoff moment can be found as

R(tTO)e3 = zb(tTO) =ps(tTO)/l0, (12)
ωb(tTO)× ps(tTO) =ṗs(tTO). (13)

The dynamics of ps depend on the elastic leg mechanism as
described below.

C. Complete Stance Phase Model

Unlike previous SLIP-based models that neglect the weight
of the robot in the stance phase [24], [71], [72], the consid-
eration for carrying a heavy payload renders the influence of
the term mg important in the short stance duration even when
compared with the large elastic force.

In the following model, the robot is regarded as a point mass
rotating around the non-slip ground contact point rather than
as a rigid body [37], [73]–[76]. Thanks to the design with
a relatively long leg (nominal length: l0), during the stance
phase, the moment of inertia around the pivot point is much
larger than the inertia tensor of the body itself, allowing us to
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Fig. 5. Identification and validation of the stance phase model. (A) The distribution of landing speed from the drop test. (B) Angular errors between the
predicted and measured takeoff velocity for the complete stance phase model and empirical linear model. (C) Angular errors between the measured and
predicted takeoff body axis for the complete stance phase model and empirical linear model. The boxes represent the interquartile range (IQR), with the
median line. Whiskers extend to the lowest and highest data points within 1.5 times the IQR from the box edges.

neglect the latter [24]. Consequently, the equation of motion
is simplified to

mp̈s =
ps

∥ps∥

(
−ks (l − l0 − lp)− ϵl̇

)
−mge3, (14)

where ks is the linear stiffness of the elastomer, l = ∥ps∥ is the
instantaneous leg length, and ϵ is a linear damping coefficient.

D. Validation of the Stance Phase Model

To validate the stance phase model in (14) and identify
relevant physical parameters, we experimentally collected the
landing and takeoff states of the robot by dropping the robot
from different heights (between 0.42 m and 0.88 m) and
orientations. We collected a total of 343 data points (average
height: 0.68 m). In this test, the total weight of the robot was
824 g, including a 500 g dummy payload and an enlarged
battery. The resultant landing speeds varied from 3 m/s to
over 4 m/s as illustrated in Fig. 5A.

The trajectory data captured from the motion capture system
were processed and encoded. The landing state consists of the
landing velocity ṗ(tLD) and the body axis R(tLD)e3 = zb(tLD)
as present in (6) and (7). Similarly, the takeoff state includes
the velocity ṗs(tTO) from (10) and body attitude zb(tTO) or
ps(tTO)/l0 from (12). Together, these vectors are visually
illustrated in Fig. 6A.

Based on the complete stance phase in (14), we employed
a Genetic Algorithm to identify unknown parameters: Θ =
{l0, lp, ks, ϵ}. The objective function is

Θ∗ = argmin
Θ

[wΘϵzb(Θ) + ϵv(Θ)] , (15)

where wΘ = 2 is a positive weight, ϵzb(Θ) is the Root Mean
Square (RMS) angular error of the takeoff body axis (the
difference between the experimental measurements and the
model predictions based on the landing states), and ϵv(Θ)
is the RMS error of the takeoff velocity axis. The identified
parameters are listed in Table S2.

To evaluate the accuracy of the model, we inspect the pre-
diction errors. The best-fitted parameters result in the average
prediction error of 0.9◦ for the takeoff body axis zb(tTO) and
2.0◦ for the direction of the takeoff velocity ṗs(tTO), plotted

as ‘Complete model’ in Fig. 5B and C. This verifies that
the dynamics described by (14) accurately captures the actual
behavior of the robot.

V. COMPRESSION OF INVERSE STANCE PHASE MODEL
FOR ONBOARD CONTROL

With the initial state from (6) and (7), and identified
parameters, the 3-DoF stance phase dynamics can be simulated
forward to obtain the takeoff state. The inverse map, providing
the landing state corresponding to the desired takeoff state, is
required for stabilizing and controlling the robot’s hopping
trajectory.

One approach to obtain the inverse map is to search for
the landing state that results in the desired takeoff state (e.g.,
shooting methods), requiring the stance phase dynamics to be
simulated several times to yield the solution. Unfortunately,
simulating the stance phase dynamics forward using (14) on
the flight control board is computationally demanding and
cannot be achieved at a sufficiently high frequency. In our
previous work [24], we circumvented this issue by neglecting
the mg term, which effectively reduces the dimension of the
system and allows for an analytical solution to be obtained.
However, this simplification is not ideal for a robot carrying
a heavy payload, as the weight term becomes significant.

In this section, we examine two alternative methods to
address this challenge. The first approach is to empirically fit
the model to the inverse map linearly, substantially decreasing
computational complexity. However, this linear model is still
based on an assumption that is valid when the influence of
the term mg is negligible. This strategy, or a look-up table,
becomes unattainable when the weight term is considered
as the map becomes nonlinear and the dimension of the
map increases from 1 to 5. To overcome this issue, we
then introduce a neural network-based compression model
to encode the solution of (14). This approach provides high
accuracy over a wide range of landing states and allows the
map to be used onboard under limited computational power.
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A. Linear Model

In [24], it was established that when the weight of the
robot in (14) is small compared with the elastic force, all
four vectors associated with the landing and takeoff states,
namely ṗ(tLD) zb(tLD), ṗs(tTO), and zb(tTO), are coplanar.
We define (i) the landing angle θld as the angle between the
landing velocity ṗ(tLD) and attitude zb(tLD), (ii) θv as the
angle between the landing and takeoff velocities, and (iii) θzb
as the angle between the landing velocity and takeoff body
axis as illustrated in Fig 6A.

Based on previous findings [24], [77], [78], the takeoff state
could be predicted by the landing state (velocity and landing
angle) for a small range of θld. As a result, all four vectors
are approximately coplanar and the stance phase map could be
further simplified. As plotted in Fig. 6B and C, both θv and
θzb empirically exhibit an approximately linear relationship
against θld as follows.

θv =κvθld, (16)
θzb =κzbθld, (17)

where κv = 2.54 and κzb = 1.69 are empirically determined
constants.

We can employ the linear relations in (16) and (17) to pre-
dict the takeoff state (ṗs(tTO), zb(tTO)) from the landing state
(ṗ(tLD), zb(tLD)) without directly applying the full dynamics
or (14). The linear model predicts the takeoff velocity direction
and body axis with the average angular errors of 3.8◦ and 1.5◦,
with the error distributions illustrated by boxplots in Fig. 5B
and C. As anticipated, the errors are somewhat larger than

the predictions made by the complete model in (14), partially
attributed to the negligence of the weight time.

B. Inverse Stance Phase Model with Neural Network Com-
pression

Here, we use a neural network to construct an inverse
map of the complete stance phase model. This is required
by the hopping controller as described later in Section VI-B.
To capture the impact of the term mge3 in (14) in the
model, we incorporate information on the direction of the
takeoff velocity with respect to gravity. The network then
predicts the required landing attitude. In addition, we take into
consideration different payload masses. This allows the model
to be readily implemented for the robot carrying different
payloads without retraining.

As the NN is designed to function with the hopping con-
troller, it takes a 6 × 1 vector as input and produces a 2 × 1
output vector. The input contains information on the landing
velocity and the desired direction of the takeoff velocity. The
network then outputs the body attitude of the robot that would
result in the desired direction of the takeoff velocity (this is
provided by the hopping controller) for that particular landing
velocity.

More specifically, the input is

xN =


∥ṗ(tLD)∥

arccos

(
eT3 ṗ(tLD)
∥ṗ(tLD)∥

)
ṗ(tTO)/∥ṗ(tTO)∥

mp

 , (18)
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where the first element is the landing speed and the second
is the angle between the velocity and gravity. Together, they
emphasize the relative direction of gravity. The third entry is
the takeoff velocity direction and the last is the payload mass.

The output is defined as

yN = [φx, φy]
T , (19)

in which the elements are Euler angles rep-
resenting the landing attitude (zb(tLD) =
[cos(φy) sin(φx), sin(φy), cos(φx) cos(φy)]

T ) that results
in the landing velocity in xN. The angle definitions are
visualized in Fig. 6D.

1) Training Data Generation: To train the neural network
model, we first generate training data from the complete stance
phase model instead of relying on the limited experimen-
tal data. The numerical simulation (4th-order Runge-Kutta
method, time step: 1 ms) provides a large range of data that
uniformly spans the input space, reducing bias in the process.

To cover a wide range of possible scenarios, we first
consider the landing state, consisting of three dimensions of
data (landing speed, angle, and payload mass) from the input
vector and two from the output (φx, φy), amounting to five
independent variables. We assign a specific range for these five
independent elements, within which we uniformly generated
15 discrete points, yielding 155 sets of training data. For the
landing speed, the range is from 1 to 5 m/s, corresponding to
a hopping height from 0.05 m to 1.28 m. For the angle with
respect to the vertical, the range is from 0◦ to 30◦. For payload
mass, the input varies from 0.5 kg to 1.5 kg. For landing
attitude specified by yN, both Euler angles span a range of
±15◦. These ranges encompass conditions of most low-speed
hopping. After the simulation with the complete stance phase
model, we obtain the remaining elements in xN, corresponding
to the takeoff velocity. The resultant takeoff speeds vary from
1 m/s to 5 m/s. Remark that the takeoff speed could be as high
as the landing speed despite viscous losses when the center
of mass of the robot when taking off is lower than at landing.
In the end, we obtain all eight elements for N = 155 pairs of
input/output vectors.

2) Training of the neural network: We train a neural
network to represent the inverse map of the stance phase
based on the generated simulation data, mapping the 6 × 1
input xN to the 2 × 1 output yN. The architecture of the
network consists of six fully connected layers structured as
6 → 64 → 256 → 256 → 32 → 2, employing recti-
fied linear unit (ReLU) activations. This design incorporates
a total of 91, 170 parameters, significantly fewer than the
155 = 759, 375 parameters required for a direct lookup table
of the inverted dynamics.

To optimize the neural network’s output, we defined a
loss function that minimizes the angular discrepancy between
the predicted landing attitude vector and the training data,
represented by the dot product of the two unit vectors. This
loss function is expressed as:

min
1

N

N∑
i

(
1− zTb (yN (i)) ẑb (xN(i))

)2
(20)

where the index i refers to the ith set of data. Here zTb (yN (i))
is the landing attitude corresponding to yN taken from the
training data, and ẑb (xN(i)) is the predicted landing attitude
based on the output of the network, computed using the current
set of hyperparameters. The minimization is over a set of
hyperparameters of the entire network.

The neural network was implemented and trained using
PyTorch, employing the Adam optimizer with a learning
rate of 0.01. To balance the contributions of different vector
ranges to the total loss, we applied batch-wise weighting.
The dataset, comprising 155 samples, was randomly shuffled
and partitioned into training (80%), validation (10%), and test
(10%) sets. To mitigate overfitting, we monitored performance
on the validation set during training. Training progressed for
2000 epochs, with convergence monitored using an angle dis-
crepancy metric derived from the loss function. As illustrated
in Fig. 6E, this metric converged to 0.09◦ for both training and
validation sets after 500 epochs, ultimately reaching 0.06◦ at
the conclusion of training.

To assess the trained network, we evaluated its performance
on the test set (75, 937 samples). We compared the predicted
attitude ẑb(tLD) constructed from the output vector with the
ground truth and inspected the angular errors. The results
demonstrate that, excluding a few outliers, the errors are
consistently below 0.1◦ (Fig. 6F). This is negligible when
compared against the takeoff angular errors computed from the
predictions from the complete model and the experimentally
collected data (velocity: 4.2◦, attitude: 2.0◦, Fig. 5B and C).

VI. HOPPING CONTROLLER FOR VARIABLE PAYLOAD

In this section, we present the control architecture for sta-
bilizing the attitude and trajectory of the thrust-based hopping
robot. The controller leverages the fact that the stance phase
is extremely short and passive, meaning no active control is
exerted during this phase. This controller is hinged on the
reverse map of the stance phase, compressed in to the trained
neural network. The key method employed is controlling the
landing attitude, which serves as the initial condition for the
stance phase. This effectively manipulates the direction of the
takeoff attitude, takeoff velocity, and subsequent aerial phase
trajectory.

The controller is divided into four primary components:
(i) a height controller, (ii) a high-level position controller,
(iii) thrust and attitude management, and (iv) a low-level
attitude controller, as illustrated in Fig. 7A. The hopping height
controller ensures the robot reaches the desired hopping height
by determining the appropriate duration for applying forward
and reverse thrust during the ascending and descending aerial
phase. This calculation determines the amount of energy to
be injected into the system to compensate for any losses.
The high-level position controller, making use of the trained
neural network, executes once per hopping cycle, calculating
the landing attitude based on the discrepancy between the
predicted and desired landing positions. The outputs from
both the height and position controllers are fed into the
thrust and attitude management module, which determines the
thrust direction, magnitude, and robot orientation throughout
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the entire aerial phase. Subsequently, the thrust and attitude
commands are relayed to the onboard low-level controller for
motor actuation.

In addition to the use of the NN-compressed reverse stance
phase model, the primary distinction from our previous work
[24] lies in the use of reverse thrust, which leads to two
changes: (i) the coupling of landing attitude and reverse
thrust in the landing state prediction within the high-level
position controller, and (ii) the incorporation of an additional
component in thrust management to account for the powered
descent phase. These modifications are necessary because the
use of reverse thrust during the powered falling phase induces
lateral acceleration when the robot aligns its body axis with
the desired landing attitude. This lateral acceleration causes
the actual landing point to deviate from the expected point
(based on a free-falling trajectory), consequently influencing
the selection of the optimal landing attitude.

A. Hopping Height Controller

As indicated by (1), the hopping height is closely related to
the amount of energy in the system, which can be regulated
through powered ascent and descent during the flight phase.
Therefore, the height control strategy involves two main steps:
nominal height prediction and height control. First, we present
a method for predicting the nominal hopping height of the next
step when the robot is landing. Then, we detail our control
strategy, which adjusts the thrust duration of the robot in

the aerial phase. The amount of adjustment is based on the
nominal hopping height and the desired hopping height, taking
into consideration the payload weight. This ensures the desired
hopping height is approximately reached.

1) Nominal Hopping height: The nominal hopping height
ĥ is estimated based on the current amount of energy of the
robot. This serves as a reference value for the hopping height
controller to evaluate whether additional energy is required
for the robot to reach the desired height hd. The estimation is
carried out cyclically at the moment (tLD) of the landing of
each hop step, based on the recorded apex velocity ṗ(tAP), the
velocity at highest point of the aerial phase, and the descent
duration tLD − tAP (refer to Fig. 7C). We determine tAP by
monitoring the vertical speed, and the landing timestamp tLD
is detected through a spike in the accelerometer reading caused
by ground impact.

In this step, the nominal height is computed assuming the
kinetic energy of the robot at landing is subsequently converted
to the potential energy, after taking into consideration the loss
factor η that captures the energy loss in the leg mechanism in
the stance phase. This yields

mgĥ =
1− η

2
m

(
ṗ(tAP)

T ṗ(tAP) + g2(tLD − tAP)
2
)
, (21)

ĥ =
1− η

2g

(
ṗ(tAP)

T ṗ(tAP) + g2(tLD − tAP)
2
)
. (22)

In the absence of control, ĥ will be the maximally feasible
hopping height of the robot after it takes off. Furthermore, the
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conservation of energy also informs us about the speed of the
robot when it takes off from

1

2
m∥ṗd(tTO)∥2 = mgĥ, (23)

with the nominal height ĥ obtained when ṗd(tTO) is upright.
2) Hopping height control: Depending on the nominal

hopping height in (22) and the desired height hd, our height
control strategy regulates two key parameters: the duration of
powered ascent (tPA − tTO) and powered descent (tLD − tPD).
The approach varies depending on the payload weight.

First, we employ (2) to determine the maximum payload
mass mp that is compatible with the unidirectional thrust
limit (taking γ = 0 and η = 0.25), resulting in mp =
(Γ/η + 1)mrg = 1.54 kg.

For lighter payload within this limit, we employ only
powered ascent, setting tPD in Fig. 7C (and later on in (28)-
(31)) to tLD. The powered ascent time tPA − tTO is chosen
based on the nominal height ĥ from (22) and the setpoint hd.
Following the strategy in [24], the decision is made as follows.

If the nominal hopping height is higher than the desired
height (ĥ ≥ hd), we forego the powered ascent as no additional
energy needs to be injected into the system. Otherwise, we
apply a short burst of powered ascent immediately after
takeoff to maximize the power input. The required energy
input to achieve the desired height is mg(hd − ĥ). Given
that the vertical speed of the robot immediately after takeoff

is approximately
√
2gĥ, the required powered ascent time

tPA − tTO can be approximated from

Tf

√
2gĥ(tPA − tTO) = mg(hd − ĥ), (24)

where Tf is the magnitude of the forward thrust force. Its value
depends on the payload mass. To meet the energy condition in
(1), Tf should be greater than ηmg. Concurrently, Tf cannot
exceed its maximum limit (Γmrg) while leaving some room
for torque generation and attitude control.

For payload exceeding the unidirectional thrust limit of 1.54
kg, we employ both powered ascent and descent. The powered
descent was designed to inject more energy into the system.
The additional energy needed during the powered descent
phase could be evaluated by subtracting the maximum energy
that could be replenished during the ascent phase Γmrgĥ from
the expected energy lost ηmgĥ in each hop. It follows that
when the energy is injected with the maximum reverse thrust
Tr = γΓmrg, the required powered descent distance hpd,
defined as the height at which downward thrust is activated
(see Fig. 7C), can be estimated from:

(γΓmrg)hpd =ηmgĥ− Γmrgĥ, (25)

hpd =

(
ηm

Γmr
− 1

)
ĥ

γ
. (26)

Based on the maximum payload mass condition in (2), the total
mass satisfies m < Γ(1+γ)mr/η. Hence, in (26), we have the
term ηm/Γmr−1 < γ and hpd < ĥ. This means the powered
descent distance is shorter than ĥ as expected. In practice, Tr
is set to be lower than the maximum limit of γΓmrg in order
to maintain sufficient attitude control capability. Therefore,

(25) is only approximately valid. Taking a cue from (25), we
introduce a tuning parameter κh to yield hpd as a function of
ĥ according to

hpd = κhĥ. (27)

Expressing hpd as eT3 (p̂(tPD) − p̂(tLD)), the duration for
powered descent tLD − tPD can also be later computed using
(28)-(31). This use of powered descent increases the vertical
speed of the robot at landing, pushing the robot closer to the
desired height hd in the subsequent jump.

B. High-level Position Control

Similar to other hopping robots capable of continuous jumps
[24], [28] and unlike aerial robots, the aerial locomotion of the
robot in this work is without direct position control. Instead,
the hopping trajectory is regulated through the jumping direc-
tion or the direction of the takeoff velocity following the short
stance phase. As previously mentioned, the takeoff velocity is
highly dependent on the attitude of the robot at landing.

The high-level position control is performed in three steps:
(i) a landing state predictor estimates the current (cycle k)
landing state based on the apex position and velocity, (ii) the
errors between the desired landing position for cycle k + 1
and the current landing position is used to calculate a desired
aerial trajectory which is represented by a takeoff velocity, (iii)
the landing attitude needed to achieve the takeoff velocity is
iteratively estimated.

The coupling between the landing attitude and the takeoff
velocity, which influences the subsequent landing location,
complicates the control strategy. The controller must solve
for the desired landing attitude iteratively as illustrated by
Fig. 7B. The iterative approach, indexed by a bracketed super-
script (·)(i), initializes with the landing attitude z

(0)
b (tLD)|k.

It then computes the upcoming landing position p̂(0)(tLD)|k
and corresponding takeoff velocity ṗ

(0)
d (tTO)|k. This leads to

the expected next landing position p̂(0)(tLD)|k+1. Based on
the difference between this and the setpoint position, the con-
troller updates the landing attitude, yielding z

(1)
b (tLD)|k. The

process is repeated until the position error of p̂(tLD)
(i)|k+1 is

marginalized.
Below, we first elaborate on how the landing position of

the current cycle k is predicted. This is computed once per
hop. Then, the position control is detailed. These steps are
iteratively executed once per hop. For brevity, we omit the
iteration index (·)(i) from the following equations.

1) Landing state prediction: The upcoming landing state,
comprising the landing position and velocity is predicted
(p̂(tLD)|k, ˙̂p(tLD)|k) once per hopping cycle after the robot
reaches the apex during the aerial phase.

As shown in Fig. 7D, the predictor assumes a free-fall de-
scent followed by a powered descent (at time tPD), neglecting
air drag. Given the apex position p(tAP) and velocity ṗ(tAP),
the position p̂(tPD)|k and velocity ˙̂p(tPD)|k of the robot at the
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beginning of the powered descent phase are estimated as

p̂(tPD)|k =p(tAP)|k + ṗ(tAP)|k(tPD − tAP)

− 1

2
e3g(tPD − tAP)

2, (28)

˙̂p(tPD)|k =ṗ(tAP)|k − ge3(tPD − tAP), (29)

where tAP is the apex timestamp and tPD marks the start of the
powered descent phase. The beginning of the powered descent
phase tPD is empirically obtained when the robot falls to a
height hpd (designated by the height controller in (26)) and
is computed from eT3 p̂(tPD) = hpd. Hence, the time the robot
spends in free fall is tPD − tAP.

During the powered descent with a reverse thrust Tr, the
robot is assumed to be aligned with the desired landing
attitude zb(tLD)|k. It experiences an additional acceleration
of Tr/mzb. Thus, the estimated landing position p̂(tLD) and
velocity ˙̂p(tLD) are

p̂(tLD)|k =p̂(tPD)|k + ˙̂p(tPD)|k(tLD − tPD)

− 1

2
(e3g + zb(tLD)|kTr/m) (tLD − tPD)

2, (30)

˙̂p(tLD)|k = ˙̂p(tPD)|k − (e3g + zb(tLD)|kTr/m) (tLD − tPD),
(31)

where the landing time tLD is calculated by imposing the flat
ground condition eT3 p̂(tLD)|k = 0.

2) Desired takeoff velocity: To ensure the robot follows
a prescribed hopping trajectory, we implement an iterative
lateral position control strategy based on the predicted landing
position of the next hop p̂(tLD)|k+1. This is then used to
compute the required takeoff velocity ṗ(tTO)|k that would
approximately and subsequently navigate the robot to the
desired position ṗd(tTO)|k.

Similar to [24], our strategy completely relies on regulating
the takeoff velocity of the robot via manipulating the landing
attitude, without directly controlling the position of the robot
in the aerial phase. This means that starting from the apex,
the landing position of the robot in the current cycle (indexed
as k) is largely determined and predicted as p̂(tLD)|k by (30).
Nevertheless, the next landing point p̂(tLD)|k+1 can be altered
by strategically regulating the takeoff velocity ṗ(tTO)|k in
the current step. This target takeoff velocity is realized by
controlling the robot’s landing attitude zb(tLD)|k as it serves
as the initial conditions for the passive stance phase.

Starting from the predicted landing position p̂(tLD)|k and
a hypothetical takeoff velocity ṗ(tTO)|k, the landing position
p̂(tLD)|k+1 in the next hopping step is estimated by assuming
an entirely ballistic trajectory. As the flight phase time is equal
to 2eT3 ṗ(tTO)|k/g, the next landing location is expected to be

p̂(tLD)|k+1 =p̂(tLD)|k + ṗ(tTO)|k
(
2eT3 ṗ(tTO)|k

g

)
− 1

2
ge3

(
2eT3 ṗ(tTO)|k

g

)2

, (32)

which can be re-arranged into

ṗ(tTO)|k =
g (p̂(tLD)|k+1 − p̂(tLD)|k)

2eT3 ṗ(tTO)|k
+ e3

(
eT3 ṗ(tTO)|k

)
,

(33)

In this form, we attempt to obtain an explicit expression of
ṗ(tTO)|k. To do so, we express ṗ(tTO)|k in terms of horizontal
and vertical components. With the energy equation in (23), we
have

∥
[
e1 e2

]T
ṗ(tTO)|k)∥2 + (eT3 ṗ(tTO)|k)2 = 2gĥ. (34)

Substituting ṗ(tTO)|k from (33) into (34) yields

∥p̂(tLD)|k+1 − p̂(tLD)|k∥2g2

4(eT3 ṗ(tTO)|k)2
+ (eT3 ṗ(tTO)|k)2 = 2gĥ, (35)

where we have applied the fact that
eT3 (p̂(tLD)|k+1 − p̂(tLD)|k) = 0 (flat ground condition).
The result permits us to solve for the vertical component of
ṗ(tTO)|k from

eT3 ṗ(tTO)|k√
gĥ

=

√√√√
1−

√
1−

∥∥∥∥ p̂(tLD)|k+1 − p̂(tLD)|k
2ĥ

∥∥∥∥2.
(36)

Then, the horizontal components can be evaluated by project-
ing (33) along the directions of e1 and e1, making use of (36)
as

eT1,2ṗ(tTO)|k =
geT1,2 (p̂(tLD)|k+1 − p̂(tLD)|k)

2eT3 ṗ(tTO)|k
. (37)

Together, (36) and (37) provide a full expression of the takeoff
velocity as a function of p̂(tLD)|k, which is dependent on
zb(tLD)|k through (30).

3) Iterative implementation of the position controller: In
this final step, we iteratively determine the landing attitude
z(i)(tLD)|k and the takeoff velocity ṗ(i)(tTO)|k that together
minimizes the landing position error. This procedure is also
detailed in Algorithm 1 in the Supplementary Materials.

First, after the robot has reached the apex, we initialize the
landing attitude to be the vertical: z(0)

b (tLD)|k = e3. This is
used to by (30) and (33) to predict the current p̂(tLD)|k and
the next landing positions p̂(tLD)|k+1.

The landing position at cycle k+ 1 is highly dependent on
the takeoff velocity ṗ(tTO)|k. Hence, we regard p̂(tLD)|k+1

as the setpoint position and use (36) and (37) to estimate the
the required takeoff velocity ṗ(tTO)|k. This is by substituting
p̂(tLD)|k+1 in those equations with the reference pd|k+1 (if
the robot is unable to reach the setpoint in a single hop, an
intermediate setpoint is introduced as described in Supplemen-
tary Materials). Once the corresponding value of ṗ(tTO)|k is
evaluated, it is used as an input vector xN for the NN. The
output yN of the network is translated to an auxiliary attitude
vector ẑ

(i)
b (tLD). We then use the outcome to incrementally

update the desired landing attitude at step k for the next
iteration according to

z
(i+1)
b (tLD) =

z
(i)
b (tLD) + wz ẑ

(i)
b (tLD)

∥z(i)b (tLD) + wz ẑ
(i)
b (tLD)∥

, (38)

where wz = 0.5 is an update weight.
Next, we repeat steps 2 and 3 to recompute the desired

takeoff velocity and update the desired landing attitude in an
iterative fashion. The process is terminated when ∥z(i)b (tLD)−
z
(i−1)
b (tLD)∥ < 10−4. In practice, this usually takes 3 − 4
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iterations. After the convergence, the final value of z
(i)
b (tLD)

is passed on to the attitude controller as elaborated below.

C. Thrust and Attitude Management Module

In this step, thrust T and attitude R of the robot in the
aerial phase are controlled according to the operational states:
unpowered flight, powered descent, and powered ascent, as
depicted in Fig. 3. Depending on the commanded thrust and
attitude, the low-level control is then responsible for comput-
ing the control torque and corresponding motor commands.

While hopping, the thrust direction switches twice each
cycle when power descent is adopted. In the meantime, the
thrust magnitude in the powered ascent and descent is provided
by the height controller. Whereas during the unpowered flight
phase, the desired thrust is nominally zero, complying with the
assumption of ballistic trajectories used for the next landing
position estimation in (32).

To compute the attitude setpoint Rd from the desired
body axis zb, we make use of the fact that zb = Re3 is
independent of the yaw angle ψ when the rotation matrix
is parameterized by roll ϕ, pitch θ, and yaw ψ angles as
R = Rz(ψ)Ry(ϕ)Rx(θ). Treating ψ as an arbitrary setpoint,
the desired roll and pitch rotations can be determined from zb
and ψ according to

Ry(ϕ)Rx(θ)e3 = Rz(ψ)
T zb. (39)

As previously described, the desired attitude while the robot is
ascending is zb = e3. In contrast, while descending (powered
or unpowered), the desired attitude is determined by the
landing position controller as the desired landing attitude.
The target thrust and attitude are then taken by the low-level
attitude controller to produce the motor comments.

D. Low-level Attitude Controller

Given the desired thrust Td and attitude setpoint Rd from
the thrust and attitude management module, we employ the
following controller to regulate the robot’s attitude and gener-
ate appropriate motor commands.

The attitude controller aims to correct both attitude and
angular rate errors, taking into consideration a possibly large
attitude error. Hence, we compute the attitude error as RTRd,
which represents the rotation between the desired attitude
Rd and the current attitude R. This error is then expressed
using the angle-axis representation as a vector eθ to avoid the
singularity issue. The control torque τ is then calculated as
[79]:

τ = kpeθ + kd (ωd − ωb) (40)

where kp and kd are control gains and ωd is the desired
angular rate, calculated by taking the numerical derivative of
the desired attitude.

To obtain the motor commands u = [u1, u2, u3, u4]
T from

the control torque τ and desired thrust Td, we deploy the
following optimization strategy.

u =argmin
u

|Td − T | (41)

subject to ui ≥ 0 and τ = Af,ru.

Here, the matrix Af,r = {Af ,Ar} (for forward and reverse
thrust) maps the motor commands to torque.

Unlike the use of linear mapping and matrix inverse as
commonly deployed in quadrotors, the method in (41) is
required in this work as the desired thrust value in the aerial
phase, particularly in the unpowered phase, is oftentimes small
or zero. Computing the motor commands directly from deter-
ministically solving the linear map would result in negative
values of ui’s. In such cases, the proposed method would allow
the robot to generate thrust slightly higher than the target in
order to ensure the motor commands remain positive and the
desired control torque is produced.

VII. EXPERIMENTAL RESULTS

To evaluate the performance of the robot, the hopping strat-
egy, and validate the payload carrying ability, we conducted
several indoor and outdoor experiments. First, in order to
compare the effect of payload weight on the robot’s ability
to track the trajectory, we evaluate the trajectory tracking
performance of the robot with variable payload up to 2 kg.
Second, we investigate the hopping maneuver with various
payload weights. Third, to demonstrate the agility of the
hopping robot while carrying a heavy load, we conducted a
90 degree sharp turn experiment, with a 500 gram payload.
Finally, we equipped the robot with an onboard computer
and LiDAR sensor as functional payload to perform outdoor
hopping experiments, testing the robot both with and without
autonomous navigation to showcase its potential for operating
in and exploring unknown environments.

A. Trajectory Tracking

To validate the hopping performance of the robot and
its payload carrying capacity, we conducted the trajectory
tracking experiments with payload mass: no payload, 0.5 kg,
1.0 kg, 1.5 kg, and 2.0 kg (Video S2).

The reference trajectory was designed as a figure-8 path,
confined within a 2.2× 2.2 m area, as illustrated in Fig. 8A.
The desired hopping height hd was set to a constant 0.55
m. For the high-level position controller, the desired landing
points for each hopping step (indicated by index k) were set
to

pd|k =

[
1.1 cos

(
2π

k

80

)
, 1.1 sin

(
4π

k

80

)
, 0

]T
, (42)

for k = 0, 1, 2, · · · , 80.
The position and velocity feedback at the apex (p(tAP),

ṗ(tAP)) was acquired through the motion capture system
(Optitrack Prime 13w) at a frequency of 100 Hz. Additionally,
to prevent IMU estimation drift during the robot’s free fall (un-
powered aerial phase) due to near-zero accelerometer readings
[24], attitude measurements were transmitted to the onboard
attitude estimator at a frequency of 10 Hz. The complete stance
phase model described in Section V was employed to predict
the landing attitude zb (tLD) for each hopping step.

Without any payload, the robot only used powered ascent
with a thrust command of Tf = 0.53mrg = 116 gf, with
an averaged powered ascending duration of ∆tPA = 0.15 s
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Fig. 8. Trajectory tracking experiments with different payload masses. (A) Composite photo capturing the robot’s trajectory while hopping with a 2 kg
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Trajectory tracking results, without payload (C) and with 2 kg payload (D). The cross markers are the landing positions. The black lines indicate the landing
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as given by the height controller. The tracking results in Fig.
8C show the robot closely following the prescribed trajectory,
with the root mean square errors of 0.17 m for the landing
position and 0.036 m for the hopping height.

Furthermore, we estimate the power consumption during
the maneuvers based on the thrust commands, exploiting the
empirical model of propulsion power (Supplementary Materi-
als). Including the power expended by the flight avionics of
approximately 0.5 W, we yield an average power consumption
of 10.6 W or 7.1 J per hop. The corresponding power loading
is 23.1 g/W. Over the 69 s trajectory, the robot traveled 11.47
m, with an average lateral speed of 0.17 m/s.

With the increased payload weight (0.5 kg, 1.0 kg, and 1.5
kg) the powered ascent thrust command was set to 0.99mrg,
1.39mrg, and 2.09mrg, respectively. Based on the average
duration of powered ascent, the robot consumed, on average,
19.5, 26.1, 43.6 W, or 13.0 to 17.5 and 29.2 J of energy per
step. The average power loading of 38.6, 48.1, and 40.3 are
higher than the no payload trajectory.

When carrying a 2 kg payload, nearer to the theoretical
payload limit of 2.22 as computed by (2), the robot took
advantage of the bidirectional thrusters to realize powered
descent. The tuning parameter for the powered descent in
(27) was set to kh = 0.8. The average powered ascent and
descent durations are 0.27 and 0.19 s. Thanks to the use of
power descent, the power loading of 15.9 is approximately

half of those of previous experiments accomplished with only
powered ascent (see Fig. 8B) As observed in Fig. 8D, the
tracking performance slightly deteriorated when compared
with the no payload case. This is reflected by the slightly
increased RMSEs of 0.36 m for the landing position and
similar RMSEs of 0.019 m for hopping height.

B. Leaping with Payload

As indicated by the complete stance phase model in (14),
the influence of the term mge3, corresponding to the total
weight of the platform, on the hopping dynamics becomes
increasingly important when the directions of the leg vector
(denoted by ps/∥ps∥) and the gravity (e3) are misaligned.
This occurs in more aggressive jumps with larger steps when
the robot’s landing attitude zb deviates significantly from the
vertical. Therefore, the inverted complete stance phase model,
compressed into the NN controller, should allow the robot to
perform large jumps more accurately than the simplified linear
model in (16) or an incomplete model used in [24] as those
models neglect the impact of the term mge3 for simplification.

Thus, to showcase the advantage of the NN-based controller,
exploiting the complete stance phase model, we designed a tra-
jectory with a large step and compared hopping performance
with that obtained using a controller with the linear model
(Fig. 9A and Video S3).
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In this experiment, the hopper was commanded to perform
a single hop with a step length of 1.0 m at a 0.65 m hopping
height. To accomplish this, the lateral speed at the takeoff must
reach 1.4 m/s. This was completed when the robot carried a
0.5 kg payload. The experiment was repeated with 1.0 kg and
1.5 kg payloads. Except for the stance phase model, other
implementations and parameters for the two control methods
were identical, including the high-level position controller,
height controller, and low-level attitude controller.

The resultant trajectories are plotted in Fig. 9. For the
lighter payload (0.5 kg), the difference between the two control
methods is less clear. The position errors of the landing point
are 0.07 m and 0.11 m for the NN-based model and the linear
model. However, as the payload mass increases, the weight
plays a more important role in the passive stance phase. Ne-
glecting the robot’s weight caused the hopper to overshoot the
landing target. For the 1.5 kg payload, the robot landed 0.58
m away from the setpoint for the linear model-based controller
whereas the error is only 0.07 m for the NN-based method. In
addition, for the NN-based controller, the performance was
not visibly affected by the variation in payload mass. The
results corroborate the superior performance of the NN-based
controller for payload carrying.

Leaping forward gives the hopping robot the ability to over-

come obstacles. To showcase this advantage, we conducted an
additional experiment where a 0.6-m-high fence was placed
in the robot’s path (Fig. 9B). The hopping robot, carrying a
1.5-kg payload, was controlled by a controller with a complete
stance phase model. With a hopping height setpoint of 0.75 m,
the robot successfully cleared the fence, leaping forward 1.2
m with an apex height of 0.7 m as plotted in Fig. 9C. Unlike
wheeled or quadrupedal robots, which would require complex
climbing mechanisms or ramps to navigate such obstacles, our
hopping robot achieves this in a single, dynamic maneuver,
demonstrating a clear advantage in traversing challenging
terrain with heavy payloads.

C. Sharp Turn with Large Steps and Payload

To further demonstrate the ability to hop with large steps
while carrying a heavy payload, we examined a turning
maneuver with a 1.1-kg payload (Fig. 10 and Video S4). Using
the ground reaction force for hopping, the robot is able to
impulsively generate large horizontal acceleration for turning,
exceeding what it could achieve when flying. This permits the
robot to perform a 90 degree turn between two large jumps as
demonstrated in Fig. 10D.

Here, the robot started the maneuver by jumping forward
with a step size of 1.0 m and a height of 0.65 m. The
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robot’s landing attitude setpoint was computed such that the
next landing position is 1.0 m away with a 90 degree turn.
After that, the previous setpoint was repeated, requiring the
robot to rapidly decelerate and suddenly come to a stop by

hopping in place. The test was repeated 10 times, with the
two control methods (based on NN model and linear model).
The realized trajectories are shown in Fig 10A. For the NN-
based controller, the robots landed accurately at the setpoints,
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with the RMS position errors of 0.13 m, 0.11 m, and 0.12
m for the three landing setpoints. While for the linear model-
based controller, the RMSEs were larger for all setpoints: 0.20
m, 0.56 m, and 0.76 m. When the step size was increased to
1.5 m, the NN-based controller successfully completed the
turning maneuver (Fig. 10B), achieving RMSEs of 0.21 m,
0.10 m, and 0.15 m. In contrast, the robot controlled by the
linear model crashed after a jump. This outcome is consistent
with the previous observations from Fig. 9A, in which the
simplification of the stance phase model undesirably brought
about landing position errors when the step size is large and
the payload mass is substantial. This improvement in accuracy
came with a modest increase in computational cost: the NN-
based controller required 1.5 ms per control loop, compared
to 1.3 ms for the linear model (implemented on a laptop with
an Apple M2 chip).

To further assess the performance, we conducted an ad-
ditional single-trial test with the step size increased to 2.0
m. Using the NN-based controller, the robot successfully
completed the maneuver while carrying a 1.1 kg payload,
achieving position errors of 0.02 m, 0.04 m, and 0.13 m for
three landing setpoints. In the experiment, the entire trajectory
took 1.82 s, counting from the first to the third jump, resulting
in an average horizontal speed of 2.20 m/s as illustrated by Fig.
10E. The sharp turn was realized by the acceleration created by
the second hop, leveraging the interaction between the elastic
leg and the ground. The acceleration of 4.4g during this 0.11 s
stance duration (Fig. 10F) dramatically exceeds what the robot
could produce during flight, given its limited thrust-to-weight
ratio of only 0.33 (considering the total weight of 1.32 kg),
markedly lower than unity.

D. 3D Mapping for Wild Environment

With the ability to carry a heavy payload, the robot is able
to carry a sensing and computing module to autonomously
operate outside the laboratory, eliminating the need for feed-
back from the motion capture system. This was previously
infeasible for the 35 g hopper in [24] due to its limited payload.

Here, the robot was equipped with a 360-degree LiDAR
(Livox Mid-360, 256 grams), an onboard computer (NUC with
CPU i3-N305, weighs 220 grams), and an auxiliary power
module (a 4S 850 mAh Li-ion battery and a voltage regulator,
115 g) as payload as shown in Fig. 2A. This allows the
robot to perform onboard LiDAR-inertial odometry for state
estimation, eliminating the need for feedback from the motion
capture system for stabilization. In addition, we integrated an
IMU (Bosch Sensortec, BMI088) with an extended accelera-
tion range (up to ±24 g) to substitute the built-in IMU of Livox
Mid-360. This resolves the IMU saturation issue caused by
the large ground impact (acceleration over 15 g). The extrinsic
parameters between LiDAR and IMU were calibrated [80], and
the homogeneous transformation matrix was derived for the
LiDAR-inertial odometry [81], [82]. The total weight became
0.95 kg, implying a payload weight of 730 g (payload ratio
of mp/mr = 3.3), including supporting structures and cables.

With the estimates of apex position p(tAP) and velocity
ṗ(tAP) required for the landing state prediction in (30)-(31),
the robot is able to hop stably outside the laboratory. To
validate the effectiveness of the onboard LiDAR odometry,
we conducted the outdoor hopping experiments along a hill-
side trail (Fig. 11A-B and Video S5). During the experiment,
the desired position and heading of the hopping robot were
manually given by a human pilot through a joystick as plotted
in Fig. 11D-F. The reference hopping height was set to 0.7
m. While generating the point cloud map in Fig. 11C, the
robot traveled 30 m, completing over 248 steps in 200 s. This
averages to a speed of 0.15 m/s at a frequency of 1.25 Hz.
Throughout, the robot closely followed the reference trajectory
with the landing position RMSE of 0.40 m, demonstrating
similar performance to the indoor trajectory tracking with
a payload. The integration of the LiDAR system to enable
outdoor operations here substitutes the use of stabilizing
aerodynamic dampers proposed in [24]. This offers a solution
for heavier hopping quadcopters as the stabilizing effect of
air dampers becomes insufficient for larger robots due to the
scaling issue nature of surface area-to-mass ratio.

In addition to providing the position and velocity for stabi-
lization, the LiDAR also generated a 3D point cloud map in
Fig. 11C. The map details the surroundings and the trajectory
of the robot. This shows the potential use of the hopping robot
for mapping applications in less structured environments.

E. Autonomous Operation in Outdoor Environment

Thanks to the point cloud map generated by the LiDAR
system, the robot could leverage this sensing capability to
hop and navigate autonomously, avoiding collisions, without
directly relying on a human operator.

To enable autonomous navigation, we adopt the sensing and
control structure in Fig. 13A. The implementation involves
three subsystems: sensing, control, and actuation.

As part of the control subsystem, the autonomous navigation
is enabled by the planning algorithm, implemented on the
onboard computer as outlined in Fig. 13B. The point cloud
data from the 3D LiDAR is split into two streams for pro-
cessing. One stream is input to the LiDAR-inertial odometry
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for estimating the robot’s attitude and position, incorporating
measurements of acceleration and angular velocity data from
the IMU as carried out previously. The second stream provides
input for trajectory planning and collision avoidance.

For trajectory planning, we employ a modified version of
the kinodynamic A* algorithm, adapted from methods used
in aerial robotics [15], [83]. This modification plans a safe,
dynamically feasible path in 3D space while accommodating
the planar characteristics of our high-level position controller.
Specifically, the start and goal positions used for path search-
ing are at the desired hopping height hd. In between, the
algorithm searches for a safe path at an altitude near hd. This
is by limiting the vertical acceleration of the generated path
to a narrow range (±0.1 m/s2). However, only the horizontal
component of the generated trajectory is used by the hopper as
pd|k+1, whereas hd is kept constant. This ensures the planner
considers obstacles in three dimensions along the trajectory.

To enhance the efficiency of safety checks, the point cloud
data are organized into a k-d tree structure [15], [84]. The
planned path is then projected onto the ground and discretized
into several landing points, maintaining a constant Euclidean
distance between each point. These discrete landing points
serve as the desired values pd(tLD)|k for each hopping cycle,
which are input into the onboard hopping position controller.
The hopping altitude setpoint is separately set to hd, regardless
of the generated trajectory. To account for dynamic obstacles
and changes in the environment during exploration, the trajec-
tory is re-planned every five hopping steps by rerunning the
planning algorithm. This adaptive approach ensures the robot
can navigate safely through changing environments while
maintaining its efficient hopping gait.

To validate the autonomous navigation ability and the effec-
tiveness of the method, we conducted the experiment along a
pedestrian path surrounded by trees as seen in Fig. 13C. The
robot had no prior knowledge of the environment, except for
the goal, located 15 m ahead and 1 m to the left of the starting
point. Between them, there were several trees between the

direct line of sight. The hopping height was set to a constant
value of 0.7 m. The trajectory was computed in real-time by
the onboard planner and updated every 5 hopping steps. The
reference landing position was continuously updated such that
the step size was 0.2 m.

The robot traveled over 15 m in 73 s (average speed:
0.2 m/s) without colliding with any obstacles (Video S6).
During this period, the robot localized itself with the LiDAR-
generated map shown in Fig. 13D. The generated trajectory
was closely followed thanks to the high-level position con-
troller. The landing position RMSE was only 0.25 m, with
the tracking results plotted in Fig. 13E. The outcome verifies
the feasibility of LiDAR-based autonomous navigation for the
hopping robot, thanks to its substantial payload capacity.

VIII. CONCLUSION AND DISCUSSION

In this work, we significantly enhance payload capacity of
thrust-based hoppers. This improvement is achieved through
the integration of bidirectional thrusters and a refined stance
phase model that accounts for gravitational effects during the
stance phase. The bidirectional thrusters enable the robot to
handle increased energy losses from ground impacts and the
leg mechanism, accommodating heavier payloads. By consid-
ering gravitational forces, the robot achieves greater accuracy
in hopping, especially during larger jumps with substantial
payloads. Our analysis demonstrates a marked increase in
payload capacity. The robot can carry loads up to 9.1 times
(2.0 kg) its own mass (220 g) while maintaining stable hopping
behavior. This load-carrying capability surpasses other mobile
robots across size scales.

The enhanced dynamic model, coupled with a neural
network-based control strategy, enables robust hopping perfor-
mance across various tasks. Exploiting the increased payload
capacity, we integrated a LiDAR and computer, demonstrating
the robot’s potential for autonomous navigation. This capabil-
ity to hop with a thrust-to-weight ratio below one suggests
promising applications for insect-scale aerial robots [85]–[87],
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which often face challenges in carrying sensors and batteries
for untethered operations [17], [88].

Presently, the high-payload hopper displays impressive
power loading compared to aerial robots at similar scales [19],
indicating that hopping in place is an efficient strategy for
loitering at low altitudes. The cost of transport of our robot
remains high (over 30) as the demonstrated maneuvers are
relatively slow. To enhance transport efficiency, realizing high-
speed hopping remains a promising avenue for future research.

Another prospective direction involves developing a footpad
to enable the robot to navigate or hold on to rough terrain [89],
[90], which could be invaluable in search and rescue missions.
Compared to a pointy foot, footpads reduce impact pressure,
enabling hopping on soft surfaces or granular media [91].
While footpads may introduce additional energy losses, they
offer a strategic trade-off between efficiency and versatility.
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