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An Efficient Iterated EKF-based
Direct Visual-Inertial Odometry for MAVs

Using a Single Plane Primitive
Shangkun Zhong and Pakpong Chirarattananon

Abstract—This letter proposes an efficient visual-inertial es-
timator for aerial robots. The main contribution lies in the
direct use of intensity measurements of the latest image frames
and key frame via both continuous and regular homographic
relations under an assumption of a single planar scene. The filter-
based method provides comprehensive estimates of position and
attitude with notable efficiency and robustness. The flight evalu-
ation indicates that the incorporation of keyframes significantly
minimizes the estimation drift while retaining accurate estimates
of flight velocity. Compared to state-of-the-art methods, the
proposed work provides rivalling performance at substantially
lower computational cost by taking the advantage of the assumed
single planar structure.

Index Terms—Aerial systems: perception and autonomy, sen-
sor fusion.

I. INTRODUCTION

AUTONOMOUS flight of Micro Aerial Vehicles (MAVs)
demands high-bandwidth and accurate motion estimates.

Visual-Inertial Systems (VINS) and Simultaneous Localization
and Mapping (SLAM) frameworks for recovering a camera
pose and 3D structures have gathered immense attention from
the community owing to their scalability, accuracy and cost
efficiency. The formulation of VINS and SLAM is generally
based on either a batch optimization [1]–[4] or an Extended
Kalman Filter (EKF) [5]–[7]. While optimization-based ap-
proaches often outperform filter-based methods in terms of
accuracy [8], systems employing EKF frameworks [5]–[7]
possess superior efficiency. This is because for EKF-based
methods, the estimates of past camera poses are continu-
ously marginalized based on the information propagated over
time and only the latest state remains updated. In contrast,
optimization-based methods consider the batch-optimization
problem across a temporal and spatial window of the camera
poses. Albeit the incorporation of keyframes, the high dimen-
sion of estimated variables leads to costly computation. This
impedes real-time applications of these systems with small
robots with limited processing power.

The VINS and SLAM can be alternatively categorized
according to the image processing procedure as direct (or
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Fig. 1. Diagram of an IMU-camera rig movement. The moving IMU-camera
setup observes a single non-horizontal plane with a unit normal µ and
orthogonal distance to the camera d. The current camera frame Cc has a linear
velocity v, angular rate ω, and a translation r with respect to the inertial frame
I. The motion of the current camera Cc and the plane primitive is recovered
based on photometric comparison between images from the current frame, a
previous frame Cc−1, and a distant keyframe Cr .

semi-direct) [9]–[11] and feature-based [1], [2], [4] methods.
The direct operation on pixel illuminations to estimate the
camera pose and geometries [10], [11] in the popular VINS
or SLAM has achieved better efficiency than feature-based
methods [1], [2], [4]. Photometric considerations render the
sophisticated feature descriptor [2], [4] and the feature tracking
process unnecessary, significantly saving the computational
demand. Besides, direct methods offer superior robustness to
environments with scarce salient features thanks to the added
capability to process edgelets [12], [13].

To markedly lower the complexity and bring down the com-
putational cost, several works considered a down-looking cam-
era operating in structured environments [14]–[18]. Therein,
the authors assumed a monocular camera overlooking planar
scenes for egomotion estimation via optic flow. Grabe et
al. proposed a nonlinear observer to estimate the robot’s
altitude and velocity based on the plane’s normal given by
a separate IMU attitude estimator [15]. Hua et al. assumed
the planar target to be horizontal to eliminate the dependence
on an external attitude estimator [16]. We previously relaxed
the assumption on the plane’s orientation by decoupling the
formulations of the gravity direction and the plane’s normal
[14]. Furthermore, using the direct EKF-based method, instead
of the feature-based implementations as found in [15], [16],
the estimator in [14] displays exceptional efficiency and ro-
bustness. Nevertheless, the simultaneous estimation of the 6D
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camera pose (position and attitude) and plane primitive has
not been achieved by these proposals [14]–[16].

This letter presents an efficient direct Visual-Inertial Odom-
etry (VIO) for MAVs overlooking a planar target. Instead of
only estimating the velocity, altitude, and gravity direction
as in [14] (or [15], [16] but without the gravity direction),
the proposed VIO provides the full six-degree-of-freedom
pose estimation with comparable accuracy to two state-of-
the-art VINS [2], [11] with unparalleled efficiency. Moreover,
unlike most feature-based VIOs, the proposed filter-based
estimator performs reliably when provided with low-resolution
images (72× 72 px) from an onboard camera of a consumer-
grade drone. This potentially increases the image sample rate,
resulting in high-bandwidth estimates.

Motivated by the semi-direct filter-based VIO [11], to
develop an efficient estimator, photometric feedback of entire
low-resolution images is fused with IMU measurements via
the iterated extended Kalman filter (IEKF) using both contin-
uous and regular homography [19] mappings. The achieved
efficiency is attributed to three key factors: (i) the choice of
the Kalman-based filtering implementation as opposed to elab-
orate nonlinear optimization techniques [1]–[3], (ii) the direct
use of dense photometric errors that eliminates the feature
extraction and tracking process and associated computational
complexity [9]–[11], and (iii) a restriction on the observation
of a single planar scene. This condition, also present in [14]–
[16], tends to be comfortably met by a flying robot with a
downward-facing camera. Leveraging this, the environment
is modeled as a single planar object to be inferred rather
than a collection of 3D unstructured points [2], [4], [11]. The
planar geometry leads to a low-dimensional state vector (18)
in contrast to hundreds of variables in the point-based VIO.

To attain satisfactory accuracy and robustness, particu-
larly when benchmarked against state-of-the-art VINS, the
photometric errors between two latest images are compared
based on the continuous homography constraint to refine the
state estimation as first shown in [14]. This largely prompts
the estimates of plane’s normal and velocity to converge.
The inherent estimation drifts along four unobservable states
(position and heading’s angle) [20] are further suppressed
through the introduction of keyframes from distant past and
the associated keyframe management mechanism. The regular
homography constraint is applied between two distant camera
views to supplement the measurement update as shown in Fig.
1. In the meantime, the use of dense photometric feedback
from entire images in both steps renders the estimator highly
robust against measurement noises.

Compared to our previous strategy [14], the proposed VIO
gains an ability to estimate full 6-DOF pose, including the
position and yaw state. This is achieved with the introduction
of the regular homography model and keyframe management
to the measurement model. The efficiency of the estimator is
retained thanks to the direct implementation and the assump-
tion of a single planar scene that was also used in [14].

The proposed method still possesses limitations. The su-
perior efficiency is highly dependent on the single plane
assumption and thereby the framework is inapplicable to
complex scenarios, in contrast to most existing VINS. How-

ever, the proposed work potentially provides a solution for
computationally restrained platforms, such as small and insect-
scale flying robots [21], [22], thanks to its superior efficiency
and comparable accuracy with other VINS.

The rest of this paper is structured as follows. Section II
provides preliminaries on the continuous and regular homo-
graphic relations. Section III presents the VIO formulation in
IEKF framework with the single plane primitive. In Section
IV, extensive flight experiments were performed to validate,
assess, and compare the performance of the proposed method
with respect to two state-of-the-art VINS [2], [11]. Lastly, a
conclusion is provided.

II. CONTINUOUS HOMOGRAPHY AND HOMOGRAPHY
MAPPING

In this section, the continuous homography constraint and
homography mapping are provided as background. Vectors are
expressed with respect to the current (latest) camera’s frame
unless stated otherwise. The camera coordinate system C and
the inertial frame I are introduced as seen in Fig. 1. The
continuous homography associates the camera’s linear velocity
v and angular rate ω with respect to a point on a stationary
plane to the optical flow ṗ

ṗ = −(1− peTz )H̃p, (1)

where p = [u, v, 1]T is the homogeneous point projection in
image plane at z = 1, ez = [0, 0, 1]T , and 1 is an identity
matrix. H̃ ∈ R3×3 is the continuous homography matrix [19]:

H̃ = M([ω]× +
1

d
vµT )M−1, (2)

where [ω]× ∈ R3×3 represents the skew-symmetric matrix
associated with ω, µ ∈ S2 denotes the unit normal to the
plane, d is the orthogonal distance from the camera center
to the plane as illustrated in Fig. 1, and M ∈ R3×3 is the
intrinsic matrix of a pinhole camera.

Unlike the continuous homography, the homography map-
ping relates the projections of points on a plane between two
images up to a scale factor γ

pCj = γHpCi , (3)

with pCj and pCi denoting a pair of coplanar points matched
on two views Ci and Cj . H is the homography matrix [19]
that associates the two views’ relative pose with respect to a
plane to the image correspondence

H = M

(
R+

1

d
rµT

)
M−1, (4)

where the matrixR ∈ SO(3) and r ∈ R3 represent the relative
orientation and translation between the two views.

III. IEKF ESTIMATION FRAMEWORK

Here, we detail the IEKF-based formulation to estimate the
camera motion, the planar landmark, and the IMU’s biases.
The overall pipeline is illustrated in Fig. 2. The state and
covariance propagation is carried out once the IMU data
arrives whereas main state update step leverages photometric
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intensities from entire current and keyframe images. After the
primary update, a keyframe management routine is called to
determine whether to replace the current keyframe and perform
a second update on the estimated position and yaw angle.

A. State Definition

The state vector is composed of the following elements:

x := (r,v, q,µs, α, ba, bω) , (5)

where r ∈ R3 and v ∈ R3 are the robocentric position
and velocity of the camera expressed in the current camera
frame. The quaternion q ∈ SO(3) from the camera frame
C with respect to the inertial frame I is parameterized with
the exponential maps following the definition in [11], α is
the inverse orthogonal distance (α = d−1) from the camera
center to the surface. The unit normal µ ∈ S2 of the plane
can be obtained by rotating the basis vector ez via the rotation
µs ∈ SO(3) such that µ = µs(ez). This implementation
resolves the singularity issue and brings about relatively simple
differentials. The IMU biases bi’s are defined below. The
state definition differs from that of our prior work [14] in
the inclusion of the position and the relative heading’s angle,
and the use of the velocity instead of the ratio velocity.

B. State Prediction

The state prediction process follows closely the procedure
for a standard Kalman filter as described in [14]. The propa-
gation of the state and uncertainties are based on discretized
dynamics. The dynamics of the state depends on the specific
acceleration â and angular rate ω̂ of the camera frame, which
can be obtained from the IMU measurements (am, ωm) after
subtractions of biases b’s and white noises w’s:

â = am − ba −wa, ω̂ = ωm − bω −wω. (6)

Consequently, the continuous-time state dynamics (ẋ) are:

ṙ = − [ω̂]× r + v +wr, (7)

v̇ = −[ω̂]×v + â− q−1(g0) +wv, (8)
q̇ = −q(ω̂) (9)

µ̇s = N(µs)
T ω̂ +wµ, (10)

α̇ = α2µTv + wα, (11)

ḃa = wba , ḃω = wbω , (12)

where g0 = −gez is the free fall acceleration. The mapping
q(•) : R3 → R3 rotates a vector from the camera frame to the
inertial frame. The terms wi’s are zero-mean Gaussian white
noise. The operator N (•)

T linearly projects a 3D vector into
the 2D tangent space of a unit vector in R2 such thatN(µs) =[
µs(ex),µs(ey)

]
, where ex =

[
1, 0, 0

]T
and ey =

[
0, 1, 0

]T
so µs(ei)’s become bases of the coordinate system [11].

In the discrete-time domain at timestamp tk−1, once the
IMU data is available, the a-posteriori state x+

k−1 and covari-
ance Σ+

k−1 at the time instance tk−1 are propagated to the
a-priori state x−k and covariance Σ−k according to the IEKF
prediction routine detailed in [14].

State prediction 
(III.B)

Kalman update
(III.C)

Photometric error 
(III.C)

IMU

Keyframe
management (III.D)

Fig. 2. A flowchart outlining the proposed IEKF Estimation method. The state
prediction is executed once an IMU data frame is updated. Pixel intensities
from entire images (current Ic, previous Ic−1, and a keyframe) are directly
used for state update through continuous H̃ and regular H homography
constraints. After the primary Kalman update, a keyframe management system
verifies whether to update the keyframe and perform a secondary update on
the estimates of the camera’s translation r and heading angle ψ.

C. State Update with Photometric Measurements

The proposed method is characterized by the use of image
illumination from whole images for the state update instead of
patches of pixels around features on keyframes [11] to improve
robustness. To radically reduce the required computation, we
formulate the plane primitive as the scene structure rather than
3D point landmarks [1], [2], [4], [11]. Similar to [11], the
plane tracking in the primary Kalman update step eliminates
the complexity in feature association projected from the plane
by exploiting the single plane assumption.

To achieve accurate estimation of the position and yaw
angle, during the state update, the regular homography is
incorporated to the measurements in addition to the use of
continuous homography model as present in our previous
work [14]. The continuous homography model makes use of
the instantaneous linear and angular velocities to dynamically
track the state with fast convergence rate. While the model
enables robust and precise tracking of the velocity and robot’s
inclination, four unobservable states (position and yaw angle)
severely suffers from integration drifts [20]. The adoption of
the regular homography mapping and keyframes essentially
suppresses the integration drifts by correlating the relative
rotation and distance between two distant images. After this
update, a routine is brought in to maintain a pool of keyframes.

1) Continuous Homography Measurement Model: To use
photometric measurements in the state update, the continuous
homography equation (2) is applied to link photometric mea-
surements from two consecutive frames, relating the observed
image motion to the current camera state.

At instance tc−1 a point on the surface is projected through
the homogeneous transformation onto the image plane (as
defined with Eq. (1)) at pc−1. Let p̄c−1 = π(pc−1) ∈ R2 be
pc−1 with its last element truncated, the corresponding pixel
intensity is Ic−1(p̄c−1) with I ∈ Rm×n denoting a 2D image.
After one camera-based time period δT , the point displaces
to a new location pc on the current (new) image plane
Ic according to the motion prescribed by the current state
xk. This displacement can be characterized by the projective
transformation H̃k(pc−1|xk). Under the constant brightness
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assumption, the pixel intensity of point pi remains unchanged:

Ic(π(H̃k(pc−1|xk))) = Ic−1(p̄c−1), (13)

where the mapping H̃k(pc−1|xk) is derived from Eq. (1)

H̃k(pc−1|xk) ≈ pc−1 − δT (1− pc−1e
T
z )H̃k(xk)pc−1. (14)

Eq. (13) allows an entire image Ic to be part of the measure-
ment vector as explained below. The accuracy of the strategy
depends on the camera’s frame rate (δT )−1.

2) Regular Homography Measurement Model: Unlike the
continuous homography that accounts for marginal changes
between two consecutive frames, the homography tranforma-
tion is applicable to images observing the same planar scene
with overlaps. Here, a keyframe from the distant past Cr is
introduced. A pair of image correspondence pr and pc on
the keyframe Cr and current frame Cc are reflected onto the
measured intensities of the keyframe Ir and Ic through the
regular homography constraint. However, due to a possible
illumination variation between distant images, the constant
brightness assumption no longer holds. The affine intensity
model consisting of two parameters κ and β is applied to link
the keyframe Ir and current images Ic at time tk as

Ic(p̄c) = κIr (π (H(pc|xk))) + β. (15)

Both κ and β are to be marginalized out during the state
update as carried out in [1], [11]. The mappingH(•) depicts the
connection between the projected points pr and pc following
the definitions given by Eqs. (3)-(4)

H(pc|xk) = pr = Hk(xk, qr, rr)pc, (16)

= M
(
Rrk + αkrrkµ

T
k

)
M−1pc, (17)

with qr and rr taken from the state vector associated with
the keyframe xr. The rotation Rrk and displacement rrk
describing the camera movement between frames Cc and Cr
are calculated from xk and xr. As a result, Eq. (15) enables
Ir to be used as part of the estimator’s measurements.

Based on the results of applying both homography con-
straints, an observation vector is obtained by stacking all ele-
ments belonging to two entire images Ic and Ir. Subsequently,
we follow the IEKF state update framework to produce the a-
posteriori estimate x+

k [11], [14].

D. Keyframe Management

A system is devised to maintain a collection of keyframe
candidates and select an active keyframe to be used as a refer-
ence for comparison with the current image frame through the
regular homography model as presented above. This routine
is executed after the main IEKF update. First, it evaluates
whether to archive the current keyframe, if so, whether to
retreive a previously used keyframe from the pool or spawn a
new keyframe from the latest acquired image.

1) Keyframe Archiving: A strategy is developed to decide
when to discard the current keyframe while attempting to
retain the keyframe for tracking as distantly as possible. Two
determining factors are the size of the overlapped region
between the current image and the reference and the overall

magnitude of the image gradient in the overlapped region.
The image gradient is considered to ensure the overlapped
area contains sufficient texture for meaningful comparison
through the homography model. The intersection over union
(IoU) [23] between two images is used to quantify the co-
visibility. The current keyframe is kept if the IoU is above
the threshold ρ1 and the mean of the illumination gradient
magnitude in the overlapped area is higher than ρ2. In such
cases, the management routine for that time step is terminated.
Otherwise the keyframe is discarded and stored in the pool,
and the algorithm proceeds to replace the keyframe by either
bringing back a past keyframe or generating a new keyframe.

Compared to the keyframe switching strategy for feature-
based or semi-direct VINSs in which the number of tracked
features in the current frame is employed as a key indicator
for the quality of the keyframe [2], [4], [11], the adopted
photometric approach may benefit from the use of global
information embedded in whole images as opposed to the
sparse salient features or landmarks.

2) Keyframe Retrieval: After archiving a keyframe, the
pool is looked into for a keyframe candidate in case the camera
returns to a previous spot. Reusing keyframes from distant past
potentially further reduces the drift in the estimated position
and heading angle. To achieve this, we first compare discarded
frames with the current image, and list frames with IoU and
photometric difference (computed with Eq. (18) below) above
and below thresholds ρ3 and ρ4. From the list, the frame with
a highest IoU is renewed as an active keyframe. If no image
meets the criteria, a new keyframe is to be generated.

Motivated by the technique used during the loop closure
in [2], in scenarios where a past keyframe is reactivated, a
secondary partial update on xk is performed by minimizing
the following cost function using the Gassian-Newton method

min
rk,ψk,κ,β

‖Ic(p̄c)− κIr(π (H(pc|xk)))− β‖2 , (18)

where ψk, the yaw angle, mathematically defined as the
rotation angle around the gravity direction obtained by de-
composing the rotation qk into two rotations q = qψqg . The
rotation qg is to align z-axis of the camera frame to the gravity
direction and the rotation qψ is about the gravity direction.
This minor update on rk and ψk is only performed when a
past keyframe is retrieved from the pool and affects only the
four unobservable states. The estimator then moves forward
to the next time step after this partial state update.

3) Keyframe Spawning: When required, the current image
is designated as a new keyframe. This occurs when the image
conditions change or the camera travels to a new scene.

IV. EXPERIMENTAL EVALUATION

Various real-world flight experiments were conducted to
assess our approach in terms of accuracy and computational
cost. Root Mean Squared Errors (RMSE) of the estimated
states with respect to the ground-truth are used for evaluation
via the open-source tool∗. In section IV-C, we first validate
the effectiveness of the proposed measurement model in Eq.

∗https://github.com/ethz-asl/trajectory toolkit

https://github.com/ethz-asl/trajectory_toolkit
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(15) and compare it against the traditional feature-based or
LK method [24]. A comparison between the proposed method
and two benchmark VINS is provided in section IV-D. Lastly,
the recovery performance of the plane primitive is evaluated
under the flights over planes of the different incline angles.

A. Experimental Setup

Flight datasets were collected with the onboard IMU and
camera of a Parrot Bebop 2 running the open-source Paparazzi
software† as shown in Fig. 3(a). A motion tracking system
(NaturalPoint, OptiTrack) was used to provide the ground-truth
position and orientation, allowing the true state to be evaluated.

The built-in visual-inertial sensor of Bebop 2 features an
MPU 6050 from InvenSense and a MT9V117 camera from
ON Semiconductor. The IMU outputs specific accelerations
and angular rates at 500 Hz. To attenuate the disturbance,
a low-pass filter was employed. The IMU data were then
downsampled to 100 Hz for the state prediction. Grayscale
images of size 240 × 240-px were acquired at 50 Hz. Note
that dropped frames occur occasionally (up to 200 ms) due to
the restrained computation (Cortex A9 CPU). IMU readings
and images were post-processed on a laptop (Intel Core i5-
8250U CPU at 1.6GHz). The data collection allows several
estimation strategies to be compared using the same datasets.
To verify the proposed estimation strategy, the algorithm was
implemented in C++‡. All estimates were obtained with the
same set of parameters after tuning for the best results and
compared to the ground-truth approximately 5 s after taking
off. For all cases, the initial estimates α0 and velocity v0
were set to 10.0 m−1 and 0.0 ms−1. The initial normal µ0

was [0, 0, 1]
T and the rotation q0 was initialised according to

the accelerometer readings. The IEKF termination condition
is when the iteration step reaches three or the norm of state
correction is lower than the set threshold.

B. Flight Data Collection

For validation, we performed eight flights over horizontal
ground covered by a pattern shown in 3(c) and recorded the
measurements. The repetitive texture was selected as it features
salient corners and edges. Among eight flights, the robot was
remotely controlled to follow two types of trajectories for over
120 s: four with arbitrary trajectories covering an approximate
1.2 × 1.2 × 1-m volume and another four with a circular
path in the horizontal direction and sinusoidal path along the
vertical direction. These flight regimes were tested to inspect
the performance of different methods in various scenarios.
Among them, flight 4© was recorded when the camera was
observing the non-planar ground as shown in Fig. 3(b).

C. Effectiveness of the Proposed Measurement Model

In addition to correlating consecutive images via the con-
tinuous homography model [14], the use of the photometric
difference between the current frame and keyframe as the
IEKF innovation term is one key feature of the proposed

†https://wiki.paparazziuav.org/wiki/Main Page
‡https://github.com/ris-lab/dvio-homo

IR reflectors for motion 
capture cameras

Ventral camera
(a)

(b) (c)

Fig. 3. (a) A Bebop 2 quadrotor and the built-in downward-facing low-
resolution camera on Bebop 2. (b) The scene with non-planar objects. (c) The
texture captured by the built-in camera of Bebop 2 used for validation flights.
The motion capture system was employed for ground-truth measurements and
position control of the robot. The scale bar in (c) indicates 0.1 m.

method. To verify the benefit contributed by the integration of
the homography meassurement model, we first compared the
results of the proposed method (DKF) against the estimation
without the incorporation of the keyframe information in
the state update stage (notated as DVIO). Furthermore, to
highlight the robustness of the featureless approach (as it is
not susceptible to feature tracking errors), the proposed direct
method is compared with an alternative version that employs
tracked features from the LK algorithm in place of photometric
measurements from entire images.

For the DKF and DVIO, images were downsampled from
240 × 240 px to 72 × 72 px. The only difference between
these two methods is the presence of the measurement model
in Eq. (15) and the subsequent keyframe management for the
DKF. For the LK-based estimator, the feature tracking pipeline
takes after [2]. That is, 50 Harris corners [25] were extracted
from 240 × 240 px images. These corners were then tracked
by the pyramidal LK method over consecutive images with
20× 20 patch size and three image levels. The keyframe was
substituted by the latest frame until the amount of the tracked
features was less than a criterion ρ5 = 10. The keyframe
retrieval procedure was excluded for LK version due to the
difficulty stemmed from the lack of a sophisticated feature
descriptor and precise motion recovery. Similar to [14], Huber
loss function was introduced to the measurement to improve
robustness against feature tracking errors.

Fig. 4 depicts the estimation results from flight 1© in detail.
It can be seen that the estimates of observable quantities:
attitude (roll and pitch angles) and velocity, from all versions
do not display noticeable difference. However, the estimates of
the position and yaw angle from the full algorithm outperform
the other two implementations.

Table I shows estimation results from eight fligths in terms
of the RMSEs of the estimated position (Pos), linear veloc-
ity (Vel), vehicle’s inclination angle (Inc) and yaw angle.
Similar to the finding from flight 1©, estimation errors of

https://wiki.paparazziuav.org/wiki/Main_Page
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TABLE I
COMPARISON OF THE ESTIMATION RESULTS FROM THE DKF, DVIO AND LK METHODS.

Flight Trajectory ‖v‖a,‖v‖m
† Pos RMSE (cm) Vel RMSE (cm/s) Inc RMSE (◦) Yaw RMSE (◦)

(cm/s) DKF DVIO LK DKF DVIO LK DKF DVIO LK DKF DVIO LK
1©

Arbitrary

51,127 11.1 27.3 39.4 6.6 7.1 5.9 0.5 1.0 1.0 4.1 7.3 7.9
2© 65,137 5.8 63.3 30.3 7.3 8.1 7.9 1.0 0.5 1.5 1.4 58.1 36.1
3© 77,158 12.7 56.9 51.9 8.6 9.2 9.2 1.3 0.6 1.7 0.8 26.5 9.0
4© 56,133 25.0 51.6 116.6 10.2 11.8 8.4 0.8 0.8 0.6 0.8 52.9 42.2
5©

Circular

100,130 13.2 145.1 45.4 6.8 8.2 8.0 1.4 1.6 1.6 0.7 99.8 24.3
6© 138,179 25.9 189.2 194.4 13.7 14.8 13.9 1.3 1.0 1.3 0.4 94.2 55.8
7© 138,179 11.5 165.0 161.4 13.6 15.0 14.1 0.9 1.1 1.3 1.2 92.2 56.9
8© 137,180 14.6 168.2 180.6 15.1 15.8 14.7 2.4 1.9 2.4 0.7 98.0 64.3
† ‖v‖a and ‖v‖m are the root mean squared velocity and maximum speed computed from the motion capture feedback. They qualitatively

describe the flight characteristics.
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Fig. 4. Comparison of the estimates from the proposed and benchmak methods from dataset 1©. The estimates of (a) Position, (b) Euler angles, and (c)
Velocity from the three approaches are plotted against the ground-truth values (GT).

velocity and the inclination angle from all methods exhibit
marginal difference, confirming the inherent observability of
these states when the flight acceleration is sufficiently excited.
Nonetheless, the full implementation outperforms the DVIO
and LK variants in terms of the accuracy of the position
and yaw angle estimation. This is because for the DVIO, the
estimation of the position and yaw angle relies exclusively on
the integration of the linear and angular velocity. Whereas in
the DKF, the use of keyframes allows a comparison between
two distant views to be made, significantly mitigating the
drift. For the LK implementation, the inferior performance
is likely due to the omission of the second state update
associated with the keyframe retrieval step and the feature
tracking errors. As found in [14], even the adoption of the
Huber loss function cannot completely eliminate outliers from
the feature tracking process. This could be further improved
with an outlier rejection strategy, such as an application of
the epipolar constraint between image correspondences [2].
On the other hand, in the direct methods, the homography
projective constraint is inherently robust from the use of the
large number of pixels from entire images via Eqs. (14) and
(16). Overall, the results demonstrate the contribution of the
homography constraint through the use of keyframes and the
inherent robustness of the direct approach. An inspection of
flight 4© indicates that violation of the single planar condition
somewhat reduces the estimation quality as anticipated, but
the DKF still produces estimates with acceptable accuracy.

In regard to computational demand, the average time con-
sumption per frame from all three implementations over all
sequences are DKF: 2.2 ms, DVIO: 1.2 ms and LK: 3.3 ms.
This implies that all three variants are lightweight whereas

DKF and DVIO are slightly more efficient than LK thanks
to the direct manipulation of image intensities and downsam-
pling. The incorporation of the homography mapping through
keyframes is benefitical to position and yaw angle estimates
without severely affecting the efficiency.

D. Comparison of the Proposed Direct Method with Two
State-of-the-art VINS

We further compare the DKF method against two state-of-
the-art VINS: VINS-Mono [2] and ROVIO [11] using their
published C++ codes. The two regimes as well as the proposed
method provide 6D pose estimates.

VINS-Mono is a variant of a visual-inertial SLAM system
rather than a front-end. It features an accurate joint opti-
mization of visual inertial information, loop closure, and map
merging and reuse [2]. For comparison, both the pose estimates
from the sliding window estimator (VINS) and loop closure
(VINSL) were logged out. In contrast to VINS-Mono, ROVIO
is characterized as a robust and fast visual-inertial front-end.
It leverages an IEKF framework by tightly integrating patch-
based photometric feedback as its Kalman innovation term.
For comparison with the DKF estimates, we used the default
ROVIO parameter configuration, which has been well-tuned to
achieve a balanced trade-off between accuracy and efficiency.
The number of tracked features per frame is set to 25 and the
patch size to 6× 6. The second and third levels are employed
for tracking the multiple level features.

Besides the data from Bebop 2 in Sec. IV-C, seven datasets
from flights over horizontal ground collected in [14] are
used to supplement the assessment as flights 9© to 15©. The
extra datasets were previously collected by an IMU-camera
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TABLE II
COMPARISON OF THE ESTIMATION RESULTS FROM THE DKF, ROVIO, VINS AND VINSL METHODS.

Flight ‖v‖a,‖v‖m Pos RMSE (cm) Inc RMSE (◦) Yaw RMSE (◦)
(cm/s) DKF ROVIO VINS VINSL DKF ROVIO VINS VINSL DKF ROVIO VINS VINSL

1© 51,127 11.1 34.2 24.5 32.4 0.5 3.6 5.6 3.6 4.1 3.5 5.7 0.5
2© 65,137 5.8 91.2 47.9 20.6 1.0 0.9 2.6 2.0 1.4 11.9 11.3 0.4
3© 77,158 12.7 137.5 44.1 20.8 1.5 0.7 1.8 1.2 0.8 12.0 8.5 0.8
4© 56,133 25.0 99.9 26.0 5.6 0.8 5.5 2.4 1.8 0.8 0.9 1.3 0.2
5© 100,130 13.2 448.6 157.5 14.8 1.4 1.1 1.0 1.4 0.7 106.6 48.6 2.8
6© 138,179 25.9 447.1 196.2 19.2 1.3 1.0 0.8 1.4 0.4 116.0 89.6 7.4
7© 137,179 11.5 90.7 335.6 29.3 0.9 0.9 15.8 4.8 1.2 30.2 28.0 1.2
8© 137,180 14.6 *1 175.4 14.7 2.4 * 1.9 1.4 0.7 * 45.3 0.7
9© 41,83 6.0 2.7 6.8 2.1 0.4 0.3 1.1 0.5 1.6 0.2 0.7 0.2
10© 36,113 2.6 5.9 4.7 2.2 0.4 0.4 1.4 0.3 0.2 1.0 0.7 0.1
11© 41,94 3.9 2.7 3.9 2.5 0.8 0.2 0.3 0.2 0.2 0.8 0.2 0.2
12© 36,64 2.6 6.3 25.1 3.7 0.7 0.6 3.5 0.3 0.3 1.8 0.2 0.2
13© 38,86 2.0 26.9 3.1 2.9 0.4 0.5 0.7 0.7 0.2 1.0 0.2 0.3
14© 76,194 9.0 * 16.7 3.2 0.5 * 1.3 0.9 3.1 * 1.2 0.2
15© 98,275 19.1 * 10.9 8.0 1.1 * 1.5 1.8 2.5 * 7.8 1.2

* ROVIO failed to initialize whan applied to these datasets. This is because the estimator requires near-zero acceleration to compute the initial
attitude. These datasets, however, were recorded with an initially large non-zero acceleration.

rig (MYNT AI, MYNT EYE) mounted on a flying robot.
The camera generated 752 × 480-px images at 30 Hz with
synchronized IMU data at 100 Hz. For estimations, images
were downsampled to 90 × 58 px for the proposed DKF
whereas full-size images were used for two benchmark VINS.

Table II lists the RMSEs of the estimates obtained from four
implementations. First, focusing on the results from the Bebop
data, the inclination errors for all approaches are invariably
small. However, the results indicate relatively noticeable RM-
SEs in the position and yaw angle estimates from ROVIO and
VINS compared to the other two methods. This is attributed
to the efficient use of keyframes by DKF and the robust loop
closure technique to suppress accumulated errors along the
four unobservable degrees of freedom. A closer inspection
suggests that the proposed DKF consistently produced position
estimates with smaller errors except the results from flight 4©.
We hypothesize that the benchmark methods suffer from the
use of poor quality images (240 × 240 px) provided by the
onboard camera of Bebop 2 whereas the direct approach of
DKF is relatively robust as it does not rely on image features.
Regarding the better performance of flight 4© for VINSL,
the distinct non-plannar objects (when compared to repetitive
textures) improves the chance of positive loop closure.

For the second set of results from the standalone MYNT
camera, the RMSEs from all methods are generally lower
compared to those of the built-in Bebop 2 camera. This is
possibly due to superior image quality (higher resolution and
global shutter) and the precise camera-IMU synchronization.
It should be highlighted that the RMSEs from DKF are similar
to those from the other three approaches, though VINSL
performed best overall. Still, it can be concluded that the
accuracy of the pose estimation from the proposed estimator
rivals those of two state-of-the-art regimes.

In terms of computation, the time costs per frame averaged
from all 15 sequences from three schemes are shown in
Fig. 5(a). Note that for VINS-Mono, three threads operate in
parallel and only the time cost of the sliding optimization is
counted. The plots show that, at less than 5 ms per frame on
average, the proposed estimator is approximately 5-20 times
faster than both VINS-Mono and ROVIO. The exceptional

efficiency is a consequence of imposing the requirement of a
single flat surface in view. In addition, the DKF benefits from
the aggressive downsamping of original images. To elucidate
how the downsampling affects the estimation accuracy and
time cost, Fig. 5(b) presents the average time per frame and
RMSE of the position estimates using the flight sequence 3© at
various downsampled image sizes. In producing these results,
the weights between the prediction and measurement model
were re-tuned to account for the change in image sizes. It
can be seen from Fig. 5(b) that the time cost grows almost
quadratically when the image size increases. Interestingly, the
RMSEs are not visibly influenced by the image size. This
is possibly attributed to the less predictable nature of the
keyframe retrieval step and the original image quality.

E. Plane Primitive Estimation and Initial Distance Value

The radical improvement in efficiency compared with point-
based VIOs originated from the formulation of the scene
structure as a single plane. This substantially reduces the state
dimension from the order of hundreds in feature-based VIOs to
tens in the proposed approach. In this section, the accuracies of
the estimated plane normal and the orthogonal distance from
the camera center to the plane are assessed.

Additional four flights with Bebop 2 following an arbitrary
trajectory were carried out over surfaces with the angles
of inclination from 0◦to 30◦. The estimator’s parameters
remained unchanged from the previous section. The estimated
angle between the estimated vertical and the plane normal over
time is shown in Fig. 5. The figure shows that the estimated
angles start with large uncertainty and thereby vary evidently
in the first five seconds. Subsequently the angles converge
close to the groundtruth (within a few degrees). While it is
possible to recover the actual initial normal using homography
decomposition [4], it requires extra feature extraction and
tracking process unsupported by the direct implementation.
In these flights, the RMSEs of the estimated distances are 0◦:
4.8 cm, 10◦: 7.2 cm, 21◦: 8.7 cm and 30◦: 7.3 cm. The results
verify that the proposed estimator is able to deal with planes
at different inclination angles.
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Fig. 5. (a) Time cost per frame of three estimation schemes averaged from all
sequences obtained from both Bebop 2 and MYNT cameras. b) The position
RMSE (gray) and time cost per frame (blue) using the sequence 3© with the
various downsampled image sizes: 120×120, 96×96, 72×72 and 48×48. (c)
The angle between the estimated normal vector and gravity vector on different
incline planes. The dash lines are the ground-truth angles. (d) The distance
estimates using different initial distances to the plane: 2 m, 1 m, 0.2 m, 0.1 m
and 0.02 m. For the all previous experiments, the initial guess of the distance
was set to 0.1 m (α = 10 m−1).

To further assess the reliability of the scale recovery, ex-
periments were conducted using different initial guesses for
the orthogonal distance from the camera center to the plane,
from 0.02 m to 2.0 m with the plane of zero inclination.
As illustrated in Fig. 5 (d), the estimated altitudes using the
different initial values converge to the ground-truth within
around 5 s. The RMSEs of the estimates are 2 m: 7.6 cm,
1 m: 4.7 cm, 0.2 m: 6.5 cm, 0.1 m: 4.8 cm and 0.02 m: 5.1
cm respectively. These results corroborate the robustness in
the scale recovery ability of the estimator.

V. CONCLUSION

In this paper, we have proposed a computationally efficient
VIO to recover the camera motion and a single plane land-
mark. The contribution lies in the direct use of photometric
feedback over entire low-resolution images, encoded by both
continuous and regular homography models, in the Kalman
innovation term. Extensive flight experiments were carried
out to assess the performance. The results prove that the
correlation between the current frame and keyframe effectively
suppresses the estimation’s drift and offers better accuracy and
efficiency than an indirect implementation. Further analysis
reveals that the proposed scheme compares favorably against
two state-of-the-art VINS when it comes to the accuracy of
the pose estimates. It should be highlighted that the single
plane assumption in the proposed estimator permits it to be
≈15-30 times faster than the two benchmark VINS. Finally,
additional flights were performed to showcase the estimator’s
ability to infer non-horizontal planes’ parameters. Overall, this
work offers an attractive lightweight navigation solution for
small aerial robots with limited computational power.
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